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(l) After computing the PPL, the logger module will publish
the PPL on the web. The PPL can be available by RSS
feed to protect it from manipulation by the CSP after
publishing. We can also build a trust model by engaging
other CSPs in the proof publication process. Whenever
one CSP publishes a PPL, that PPL will also be shared
among other CSPs. Therefore, we can get a valid proof
as long as one CSP is honest.

5.2.2 Verification
An investigator first gathers the required logs from the CSP
and presents the logs along with the PPL to the court. The
verification process, which will be executed by the auditor
constitutes of three steps: 1) authenticity verification of the
published PPL, 2) integrity verification of individual log
entries, and 3) verification of the chronological order of the
logs. Among these three steps, only the detail of the second
step (integrity verification process) depends on the chosen
accumulator scheme.
1) PPL Verification: The verification process, presented in
Figure 4 starts from checking the validity of the published Proof
of Past Log PPL. The auditor extracts the published AED and
TP from the PPL. Then using the signature SigSKC (AED, TP )

and public key of the CSP PKC , the auditor verifies the integrity
of the AED and TP . A PPL is valid if the digital signature is
valid. The verification process then proceeds to the next step.
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Fig. 4: Log Verification Process Flow

2) Integrity Verification of Log: To verify the integrity of
a log entry DBLE, the auditor generates the membership
information for the DBLE, AE and checks whether the DBLE

exists in the AED using the AE. If exists, then the auditor
proceeds towards the log order verification process, otherwise
the log entry DBLE is rejected. If the DBLE is the last log
entry of an epoch, the AE of the DBLE needs to be equal to
the AED, otherwise it is rejected.
3) Sequence Verification: Figure 5 illustrates the log order
verification process of two consecutive log entries – DBLE0

and DBLE1, where DBLE0 appears immediately before
DBLE1 in the original sequence of log generation. In Figure
5, ELE0 denotes the Encrypted Log Entry of the first log and
ELE1 represents the same for the second log entry. To verify
the correct order, the auditor calculates the Log Chain LCa

from the first Log Chain LC0 and the second Encrypted Log
Entry ELE1 according to the following equation.

LCa =< H(ELE1, LC0) > (6)

If LCa matches with the 2nd Log Chain LC1, the auditor
accepts the logs, otherwise he rejects it. The auditor executes
this process for all {DBLEi, DBLEj}, where i ε {0, n− 1},
j = i+1, and n is the number of logs provided for verification.
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Fig. 5: Log Order Verification Process Flow

5.3 Accumulator Design
We used three accumulator schemes – Bloom filter [44], One-
Way Accumulator [45], and our variation of the Bloom filter
based accumulator Bloom-Tree. The steps from (g) to (k) of
log and proof insertion (Figure 3), and the integrity verification
of logs work differently for the different accumulator schemes.

5.3.1 Bloom filter:
A Bloom filter is used to check whether an element is a member
of a set or not [44]. It stores the membership information in a
bit array. Bloom filters decrease the element insertion time and
membership checking time. However, it is a probabilistic data
structure and suffers from false positives. We can decrease the
false positive rate by increasing the size of the bit array.

Proof Creation: To use the Bloom filter as a proof, we use
one Bloom filter for one static IP for each day. That means,
one Bloom filter stores the proof of all the logs of one static IP
for a particular day. In step (g) of Figure 3, the logger module
retrieves the latest Bloom filter AE from the proof storage,
which holds the bit positions for the previously inserted logs
of the day. In step (h), the logger generates k bit positions
for the database entry DBLE by hashing the log entry with k
different hash functions. The logger then sets the calculated k
bit positions of the AE and sends the updated AE to the proof
storage. At the end of each day, the CSP retrieves the Bloom
filter entry of each static IP AED and creates the proof of past
log PPL for that day using equation 5.

Integrity Verification of Log: To verify the integrity of a log
entry DBLE using the Bloom filter accumulator, the auditor
first calculates the k bit positions of the Bloom filter by hashing
the DBLE with the k different hash functions. These bit
positions will be then compared with the published AED. If all
the calculated bit positions are set in the published Bloom filter
AED, then the DBLE is valid. One single false bit position
means the log entry is not valid.

5.3.2 One-Way Accumulator:
One-Way accumulator is a cryptographic accumulator, which
is based on RSA assumption and provides the functionality
of checking the membership of an element in a set [45].
This scheme works with zero false negative and false positive
probability. Initially, we need to create the public and private
values for the accumulator. The private values are two large
prime numbers P, and Q. The public values are N and X ,
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where N = P ∗Q and X is the initial seed, which is a large
prime number.

Proof Creation: In step (g) of Figure 3, the logger retrieves
the latest accumulator entry AE. If the AE is empty, i.e., no
DBLE has been inserted yet on that day, then the AE is
generated using the following equation:

AE = XHn(DBLE) mod N, (7)

where Hn(DBLE) is a numeric hash value of DBLE. If
the retrieved AE is not empty, the new AE will be generated
using the following equation:

AE = AEHn(DBLE) mod N (8)

The logger module then sends the calculated AE to the proof
storage. At the end of the day, the logger retrieves the last
accumulator entry AED and creates the proof of past log PPL

for the day using Equation 5. Additionally, the logger needs
to generate an identity for each DBLE and tag it with the
DBLE. For m number of DBLEs on a day, the identity AIDi

of the ith DBLE is calculated using the following equation:

AIDi = XHn(DBLE1)..Hn(DBLEi−1)Hn(DBLEi+1)..Hn(DBLEm)

mod N
(9)

Integrity Verification of Log: Along with the DBLEs, the
auditor will be provided with the AID of the DBLE. While
verifying the validity of the DBLEi, the auditor first computes
(AID

Hn(DBLEi)
i mod N) and compares it with AED. If AED =

(AID
Hn(DBLEi)
i mod N), the log entry is valid otherwise not.

5.3.3 Bloom-Tree
As a probabilistic data structure, the Bloom filter suffers from
false positive (FP) rate. The only way to decrease the percentage
of FP is to increase the size of bit array. However, a bit array
with larger size introduces space overhead and performance
degradation for log insertion and verification. Inspired by [42],
we design a data structure – Bloom-Tree, which requires a
significantly smaller amount of space while ensuring a very
low percentage of FP compared to the regular Bloom filter. An
example of a Bloom-Tree is presented in Figure 6.

Proof Creation: To build a Bloom-Tree, we create a new
Bloom filter after every m number of logs. Hence, for n number
of logs in a day, there will be NB = d(n/m)e number of
Bloom filters. To insert the proof of the ith log entry DBLEi,
in step (g) of Figure 3, the logger module first checks whether
i mod m = 0. If i mod m = 0, a new Bloom filter AE will
be created, otherwise the logger retrieves the latest bloom filter
AE from the proof storage. Later, using the same approach as
described previously for the regular Bloom filter, the logger
updates the k bit positions of the AE and sends the updated
AE to the proof storage.

To generate the PPL, the logger retrieves the NB Bloom
filters for a static IP at the end of each day. At the time of PPL
generation, these Bloom filters will then be cumulatively added
to a higher order Bloom filter. The accumulators that hold the
membership information of the logs, will be purged from the
proof storage after the PPL is generated (nodes inside the dotted
red region in Figure 6). An intermediate node (nodes inside
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Fig. 6: An example of a Bloom-Tree where the total number
of logs is at most 4 ∗m.

the solid green region) holds the membership information of
its child Bloom filter and is stored in the proof database. The
branching factor b of the accumulator can vary according to
the volume of logs. The root of this tree will be considered as
the AED and the logger creates the PPL using this AED. To
maintain this data structure and use it for integrity verification,
each Bloom filter will have its parent’s identity and a boolean
attribute to denote whether a node is a leaf node.
Integrity Verification of Log: An example of the verification
process using the Bloom-Tree is illustrated in Figure 7. Besides
the AED, the auditor needs to be provided with the nodes of
the Bloom-Tree. To verify the integrity of logs, the logs need
to be provided with sets of m logs. Hence, in this approach,
the auditor needs to collect some extra logs, though he does
not need those. If the auditor actually needs logs in the range
of [s, e], he needs to collect logs from bs/mc ∗m to (be/mc+
1) ∗m − 1. For example, to verify the integrity of 114th to
126th logs, the auditor needs to collect logs from 110th to
129th for m = 10. Accordingly, the auditor needs to collect
2(m− 1) extra log entries in the worst case.

The collected logs will then be grouped according to their
order of generation, where each group contains m logs. For
the m number of logs of the ith set, a new Bloom filter AEGi

is created and all the logs of the ith set are inserted to the
AEGi . Now, the verifier finds the leaf node of the Bloom-Tree
that contains the AEGi .

If all of the m logs are valid, we will find a node AEL that
contains the AEGi . In Figure 7, node AE11 (marked as green)
is one such leaf node. Consequently, the parent of the AEL is
identified and the auditor verifies whether AEL exists in its
parent accumulator. The process continues until it reaches the
AED. A positive result while checking with AED, confirms
that all of the logs of the ith set are valid. The same procedure
will be applied to other sets of logs.

5.4 API Design
We designed and exposed the API using RESTful (Represen-
tational State Transfer) web services [46]. REST-style web
services are stateless, which enables multiple servers to handle
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Fig. 7: Integrity Verification using the Bloom-Tree

multiple requests to improve the scalability of servers. By using
REST, we can design web services that focus on a system’s
resources. For logging as a service, the resource is log and
proofs of logs. RESTful web services are implemented by using
HTTP standard methods (e.g. GET, PUT, POST, DELETE).
According to the REST principle, to retrieve a resource, GET
operation is used on that resource. Caller of a REST service
can pass different parameter to retrieve his or her desired result.
We utilize the same approach in SecLaaS. For example, in the
network log scenario, a sample GET request for our scheme
can be,

GET / l o g ? fromIP =10 .13 .155 .4& d a t e =2015−03−04
&s t a r t =10:45:00& end =12:45:00& t z =UTC

This GET operation requests the logs where “ from ip” is
10.13.155.4 and the time is between 10:45:00 to 12:45:00 UTC
on March 4th, 2015. From this GET request, SecLaaS first finds
the logs that match the search criteria. For the Bloom-Tree, we
also need to provide all the nodes of the tree that match the
search criteria.

An example of a response message while using the Bloom-
Tree is presented in Figure 8. The response message produces
the ELE and LC of each log entry separately, which are
encapsulated in DBLELIST . The PROOF tag represents one
node of the Bloom-Tree, which contains the bit array, identity of
the parent node, and a boolean value to indicate whether a node
is a leaf or not. For the Bloom filter and the RSA accumulator,
the PROOFLIST will be empty. After receiving the above
response from SecLaaS API, the caller will acquire the Proof
of Past Logs (PPL) of that day, which was made publicly
available by the CSP earlier. Any client-side application should
be able to parse this response message and run the verification
processes discussed earlier.

Security of REST web services is mostly ensured by using
HTTPS protocol (HTTP over transmission security protocol
SSL / TLS). All REST API calls must take place over HTTPS
with a certificate signed by a trusted CA. The client application
first verifies the certificate of CSPs to ensure that it is indeed
communicating with a valid CSP. To authenticate a valid caller,
we use an API key. API callers (law enforcement agencies and
CSPs) share a secret value and the signature of the API caller on
that secret value is treated as the API key. This signing should
occur before encoding the URL query string. To authenticate

an API caller, CSPs verify the signature on the shared secret.
It provides a two-way authentication: compromising only the
secret value or only the private key of the LEA cannot break
this security. To spoof a valid caller, an attacker needs to
compromise both.

<? xml version =“1. 0”  encoding=“UTF-8” ?> 

<SECLAASRESPONSE> 

<DBLELIST> 

<DBLE> 

<ELE>Log entry 1</ ELE> 

<LC>Log chain of 1st entry </ LC> 

</DBLE> 

. . . 

<DBLE> 

<ELE>Log entry N</ ELE> 

<LC>Log chain of Nth entry </ LC> 

</DBLE> 

</ DBLELIST> 

<PROOFLIST> 

<PROOF> 

<BITS>Bit array</ BITS> 

<PARENT>Parent Node ID</ PARENT> 

<ISLEAF>1/ 0</ ISLEAF> 

</ PROOF> 

. . . 

<PROOF> 

<BITS>Bit array </ BITS> 

<PARENT>Parent Node ID</ PARENT> 

<ISLEAF>1/ 0</ ISLEAF> 

</ PROOF> 

</ PROOFLIST> 

</ SECLAASRESPONSE> 

 

Fig. 8: Response Message of SecLaaS

6 SECURITY ANALYSIS

In our collusion model, there are three entities involved – CSP,
user, and investigator. All of them can be malicious individually
or can collude with each other. CSPs have full control over
the stored logs and the proofs of logs. Hence, they can always
tamper with the logs. After acquiring logs through API, an
investigator can also alter the logs before presenting it to the
court. Therefore, we propose a tamper evident scheme in this
paper. Any violation of the integrity properties, as mentioned in
Section 4, can be detected during the verification process. By
using our proposed scheme, we can also preserve the privacy
of cloud users from external or insider attackers. In this section,
we discuss how our proposed system can ensure all the security
properties that are required to protect collusion between CSP,
user, and investigator.

Table 2 presents all the possible combinations of the
collusion, possible attacks for each collusion, and required
security properties to defend against that collusion. We denote
an honest CSP as C, a dishonest CSP as C̄, an honest user as
U, a dishonest user as Ū , an honest investigator as I, and a
dishonest investigator as Ī .

I1, I2, I4, I5. The integrity properties I1, I2, I4, and I5 prevent
removal and reordering of log entries by a dishonest CSP and
investigator. At the verification stage, our system can detect
any such removal and reordering of log entries.

Let us assume that there are three log entries DBLE0,
DBLE1, and DBLE2 and their proof has already been published.
Now, if the CSP removes DBLE1 and provides only DBLE0
and DBLE2 to the investigator, then this removal can be easily
detected at the sequence verification stage. In this case, the
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Is Honest? Notation Attack Required Security
Properties

CSP User Investigator
3 3 3 C U I No attack None
5 3 3 C̄ U I Reveal user activity from logs C2
3 5 3 C Ū I Recover cloud users’ log from published proof C1
3 3 5 C U Ī Remove, reorder, and plant fake logs I4, I5, I6
3 5 5 C Ū Ī Remove, reorder, plant fake logs, and recover other cloud users’ log I4, I5, I6, C1
5 3 5 C̄ U Ī Remove, reorder, plant fake logs, repudiate published PPL, and reveal

user activity
I1, I2, I3, I4, I5, I6, I7,
C2

5 5 3 C̄Ū I Remove, reorder, plant fake logs, repudiate published PPL, recover
cloud users’ logs and activity

I1, I2, I3, I7, C1, C2

5 5 5 C̄Ū Ī Remove, reorder, plant fake logs, repudiate published PPL, recover
cloud users’ logs and activity

I1, I2, I3, I4, I5, I6, I7,
C1, C2

TABLE 2: Collusion model, possible attacks and required security properties

hash of LC0 and ELE2 will not match with LC2, because the
original LC2 was calculated by hashing LC1 and ELE2.

Since the published PPL is generated using the accumulator
entry of the last log of an epoch AED, removal of the last log
DBLE2 can also be detected. After removing DBLE2, DBLE1
will be the current last log. However, the AE1 of DBLE1 will
not match with the AED of PPL, which was actually AE2
of DBLE2.

An auditor can detect the re-ordering of logs using the
verification procedure. For example, while providing the logs to
an auditor, if the CSP or investigator provides logs in the order
of DBLE0, DBLE2, DBLE1, then using the same technique, the
auditor can identify that DBLE1 does not come after DBLE2
in actual generation order.

The CSP can further try to change the DBLE2 by replacing
the original LC2 with a new Log Chain value. Hence, reordering
or removing of logs will not be detected in the sequence
verification process. However, an attempt of changing the
DBLE2 will be detected during the individual log entry
verification phase which is ensured by I3 and I6 properties.

A malicious investigator can also claim the unavailability
of logs for a certain period of time. However, the existence
of a published PPL for that particular epoch indicates the
presence of logs, which can prevent an investigator to establish
the claim of unavailability of logs.

I3, I6. The integrity properties I3 and I6 prevent producing
fake logs by CSPs and investigators. A colluding CSP can plant
false log information while providing the logs to investigators.
A dishonest investigator can also try to frame an honest user
by presenting fake logs to the court. However, if the CSP or
investigator provides fake logs after publishing the proof, our
system can detect these fake logs. If DBLEf is a fake log
entry, then using any type accumulator scheme we can detect
that the fake log does not exist in the published AED of the
Proof of Past Log PPL, and the auditor can reject that incorrect
log. However, the Bloom filter is a probabilistic data structure
and suffers from false positive (FP) rate. Hence, there are still
some chances of planting false log information by CSPs or
investigators if the FP is not small enough to be negligible.

I7. This integrity property ensures non repudiation of Proof
of Past Log by CSPs. After publishing the PPL, CSPs cannot
repudiate the published proof, as the Accumulator Entry AED

is signed by their private key. Nobody other than a CSP can
use the private key to sign the AED. Hence if a PPL passed
the signature verification step using the public key of the CSP
PKC , the CSP cannot deny the published value.
C1, C2. The confidentiality properties C1 and C2 ensure cloud
users’ privacy from an external attacker or a malicious cloud
employee. In all of the accumulator schemes, an accumulator
entry for a log entry is generated by hashing the log. As the hash
function provides the one-way property, the proposed scheme
ensures the C1 property, i.e., from the proof of logs, adversaries
cannot recover any log. While storing the log data in persistent
storage, we propose to encrypt some crucial information e.g.,
user id, destination IP, etc. by using a common public key
of the law enforcement agencies. Hence, a malicious cloud
employee cannot retrieve crucial confidential information of
users from logs stored in persistent storage. For example, a
malicious cloud employee cannot identify the visiting IPs of
a particular user. In this way, our scheme can ensure the C2
property.

7 IMPLEMENTATION AND EVALUATION
In this section, we present the implementation of SecLaaS
on OpenStack and performance analysis of the scheme using
different types of accumulators.

7.1 Implementation
System Setup: To build a private cloud, we used Openstack1

– an open source cloud computing software. We built our
prototype for network logs and used Snort as a source
of network logs. We created the virtual environments with
VirtualBox3 (a free virtualization software) running on a single
Ubuntu machine. Figure 9 illustrates the system setup and
below is the description of the system:
• Host machine’s hardware configuration: Intel Core I7 quad
core CPU, 16 GB ram, and 750 GB hard drive. Ubuntu 12.04
LTS 64-bit is used as Host Operating System.
• VirtualBox 4.1.22 r80657 for Ubuntu 12.04 LTS.
• Openstack (Essex) installation in VirtualBox; for simplicity,
the system had one node controller. Configuration of the virtual

1. http://www.openstack.org
3. https://www.virtualbox.org
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Fig. 9: Prototype Environment Configuration [47]

node controller: Intel 2.5Ghz Dual Core cpu, 8 GB ram, and 20
GB hard drive. Ubuntu 12.04 64-bit Server edition is used as the
Operating system for Openstack setup. We hosted maximum ten
m1.tiny VMs on the node controller for performance evaluation.
• In the virtualized environment, the Cloud Controller required
following network adapter configuration in VirtualBox to work
properly:

• Adapter 1: Attached to NAT- eth0 of the Cloud Controller
is connected here.

• Adapter 2: Host-only network for Public interface- con-
nected with eth1 (IP was set to 172.16.0.254, mask 255.
255.0.0, DHCP disabled)

• Adapter 3: Host-only network for Private (VLAN) inter-
face connected with eth2 (IP to 11.0.0.1, mask 255. 0.0.0,
DHCP disabled)

• We used RSA (2048 bit) for signature generation, and SHA-
2(SHA-256) hash function for hashing.
• Snort was set up in the node controller to track the network
activity of the virtual machines. Here is a sample Snort log:

‘‘11/19-13:43:43.222391 11.1.0.5:51215 −>fg
74.125.130.106:80 TCP TTL:64 TOS:0x0 ID:22101

IpLen:20 DgmLen:40 DF ***A***F Seq: 0x3EA405D9 Ack:
0x89DE7D Win: 0x7210 TcpLen: 20’’

This log tells that the virtual machine with private IP 11.1.0.5
performed a http request to machine 74.125.130.160. Logs
generated by Snort were first streamed to the Parser module,
which creates a Log Entry (LE) and sends to a message
queue (MQ). The Logger module always listens to this MQ
and whenever there is a new LE in the MQ, the logger
starts executing steps (d) to (i) of Figure 3. To publish PPL
periodically, steps (j) to (l) are encapsulated as a Cron job.
Specific time and frequency of publishing PPL can be controlled
by the Cron job parameters.

By reverse engineering Openstack’s “Nova” mysql database,
it is also possible to find out the static private IP and user
information from a public IP. We used the references among
FloatingIps, FixedIps, and Instances tables to resolve the user id
for a particular log entry. Figure 10 shows the relation between
these three tables.

FixedIPs	
 Instances	
FloatingIPs	


fixed_ip	
 instance_id	
 user_id	

…..	


…..	


fixed_ip	
 instance_id	


…..	
 …..	


Fig. 10: Resolving User ID from Public IP
Exposing APIs: To implement the RESTful APIs, we used

Glassfish as the web server and used JAX-RS for creating the
REST APIs. Figure 11 shows the process flow of handling an
API call. The web server listens on port 8443 and whenever
it receives a request from an API caller, it invokes a java
servlet. The servlet then communicates with the verification
and authentication module. The verification and authentication
module is responsible for checking the validity of the API
request and the authentication information provided by the
caller. If the call is valid and the caller is authenticated, then the
servlet communicate with the persistent storage to retrieve the
requested data. Finally, the servlet prepares an XML response
and returns to the calling entity. The response can be JSON or
XML, but we used XML as it is a well known format and any
client application should be able to handle it.
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Fig. 11: Process Flow for Handling API Calls

7.2 Comparison Among Different Accumulators
In [26], we have shown that the Bloom filter outperforms the
RSA accumulator in terms of log insertion, PPL generation,
integrity verification, and space requirement. In this section,
we compare the performance between the Bloom filter and the
Bloom-Tree for false positive probability of 0.0001%, 0.001%,
0.01%, 0.1%, and 1%. We used m = 1000 and b = 10 for
the Bloom-Tree. For each of the experiments of Figure 12, we
stored maximum 1 million logs generated by Snort.
Log Insertion: Figure 12a shows the performance analysis of
log insertion, which includes the time required to complete
the steps from (d) to (i) of Figure 3. The graph indicates that
for both of the accumulators, the log insertion time increases
when we reduce the percentage of FP and increase the total
number of logs in a day. However, the log insertion time for
the Bloom-Tree is nearly constant with the increase in number
of logs. The reason is for the Bloom-Tree, we are always
using a bit array that can hold membership information of m
items. We notice that the Bloom-Tree provides significantly
better performance than the Bloom filter and the difference is
greater for lower percentage of FP. The reason is that for the
Bloom filter, the size of bit array and number of hash functions
increase significantly when lowering the percentage of FP for
a large number of items. As m is very small compared to
total number of logs, the increment in the size of bit array and
number of hash function is reduced using the Bloom-Tree.

PPL Generation: Figure 12b illustrates the performance
analysis of generating the Proof of Past Log of a day for
different configurations of the Bloom filter and the Bloom-
Tree. We notice that for both of the accumulator schemes,
the PPL generation time increases while increasing the total
number of logs and decreasing the FP probability. Figure 12b
illustrates that the Bloom filter outperforms the Bloom-Tree
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(c) Best Case Integrity Verification
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Fig. 12: Comparison between the Bloom filter and the Bloom-Tree

when using same configuration. The cost of building the Bloom-
Tree is the reason behind its lower performance, since this is
an additional work and is not required for the Bloom filter.

Since the number of nodes and depth of the Bloom-Tree
increases with the total number of logs, the cost of building
the root (AED) increases and so does the PPL generation for
greater number of logs. The size of the bit array increases while
increasing the number of logs and decreasing the percentage
of FP. Since the cost of hashing increases with the size of
message, the PPL generation time for the Bloom filter also
increases with the size of the bit array.
Integrity Verification: For the Bloom-Tree, the auditor may
need to collect some extra logs. Hence, to compare the
performance for integrity verification, we considered two cases:
best case and worst case.

In the best case scenario of the Bloom-Tree, the auditor
collects the m number of logs, where the start index is SI and
SI mod m = 0. We compare the performance of verifying the
integrity of such m number of logs using the Bloom-Tree and
the Bloom filter for different FP probability and total number
of logs. Figure 12c depicts that the performance of the Bloom-
Tree is significantly better than the Bloom filter in the best
case scenario.

In the worst case scenario of the Bloom-Tree, the auditor
collects 2 ∗ (m − 1) additional logs and needs to verify the
integrity of those logs in order to verify the integrity of only
2 log entries. To compare the performance in this situation,
we measure the integrity verification time for 2m logs using
the Bloom-Tree and integrity verification time for 2 logs using
the Bloom-filter. From Figure 12d, we notice that even in the
worst case scenario, the Bloom-Tree performs better when the
percentage of FP is very low and number of total logs is high.

The reason for a better performance of the Bloom-Tree is
that the size of bit array is very small compared to the Bloom
filter and the cost of checking the bits increases linearly with
the size of the bit array. Moreover, we need to generate a
smaller number of bit positions for the Bloom-Tree, which
requires less number of hashing.
Storage Overhead: The storage overhead for Bloom filter
only depends on the storage requirement of the proofs. In the
Bloom filter, the size of the bit array depends on the expected
number of elements and FP probability. To ensure very low
FP probability for high number of expected elements, the size

of bit array needs to very high. For example, to ensure 1% FP
for 100,000 elements, the size of bit array needs to be 958,506
and to ensure 0.0001% FP for the same number of elements,
the size of bit array should be 2,875,518.
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Fig. 13: Analysis of Space Requirement
For the Bloom-Tree, we store the intermediate nodes of

the tree, which hold the membership information of a child
accumulator. The size of the bit array for the intermediate nodes
depends on the branching factor b. If b = 10, the intermediate
nodes only need to ensure the desired FP probability for 10
elements. For m = 1000 and b = 10, the Bloom-Tree scheme
needs to store only 11 nodes for 100,000 elements and the size
of these nodes depends on the FP probability. To ensure 1% FP
for 100,000 elements using the Bloom-Tree, we require 3960
bits including 32 bytes for storing parent identity and 1 byte
for a boolean attribute. This is 119.31 KBytes less compared
to the regular Bloom filter scheme. Figure 13a presents an
analysis of storage savings by the Bloom-Tree compared to
the Bloom filter for different configurations of FP and total
number of logs. Figure 13a depicts that storage savings by
the Bloom-Tree increases with the increase in number of logs
and decrease in percentage of FP. We notice that if the total
number of logs for a user in a day is 10,000,000 and we want
to ensure 0.0001% FP, the Bloom-Tree can save approximately
35 MBytes of storage. Considering SecLaaS is a continuous
process, the storage saving can reach several terabytes over
the years.

Performance Overhead. To identify the performance degra-
dation of NC for running SecLaaS, we measured the system
overhead from the CPU performance information of SysBench
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[48]. We first measured the CPU performance of NC while
it hosted different numbers of VMs and each VM was
executing the ping command to an external machine. Later,
we kept running Snort, Parser and Logger module on NC and
measured the CPU performance to identify the system overhead.
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Fig. 14: Performance Over-
head for different accumulator
schemes

Figure 14 represents the
overhead for different ac-
cumulator schemes. The
lowest and highest over-
head found was 1.67% and
3.28% and there was no
single accumulator scheme
which was best or worst in
terms of performance over-
head. Moreover, the over-
head did not increase with
the number of VMs; rather
we noticed a downward
trend of overhead with the
increase in number of VMs.
The reason behind this behavior is that the overhead of running
VMs is higher than the overhead of running SecLaaS. Therefore,
when the number of VMs increases, the overall overhead for
running SecLaaS decreases.

8 DISCUSSION

8.1 Selection of the Accumulator

Our previous work [26] reveals that the Bloom filter outper-
forms the RSA accumulator in all aspects, excepts the false
positive (FP) rate. In this paper, we propose the Bloom-Tree that
can ensure negligible FP while providing better performance
than the regular Bloom filter approach in terms of log insertion,
integrity verification, and space requirement. The Bloom-Tree
performs worse than the Bloom filter in PPL generation and
in the worst case scenario of integrity verification when the
FP is high. However, the PPL will be generated after a certain
epoch and that can be done by a background process without
affecting the regular log insertion process. Moreover, as our
goal is to provide better security by ensuring low FP rate, the
worst case scenario for high FP rate should not be considered
while selecting a better accumulator.

We considered to build a tree structure for the RSA
accumulator similar to the Bloom filter but our theoretical
analysis suggest that it will not be better than the regular RSA
accumulator. One of the reasons is that the performance (time
and space) of the RSA accumulator does not vary with the
total amount of expected log entries. It only varies with size
of the security parameters P, Q, and X. Figure 13b, shows
the overhead of storage requirement if we use tree-based
structure similar to the Bloom-Tree for the RSA accumulator.
In a tree-based accumulator, number of intermediate nodes
increases with the number of logs. For the RSA accumulator,
each intermediate node requires the space of the regular RSA
accumulator including the identity. Therefore, the storage
requirement increases with the number of logs. Introducing
the tree-based approach for the RSA accumulator will also
introduce higher time for PPL generation and log verification

because of the additional intermediate nodes. Considering all
of the criteria, we posit that the Bloom-Tree can be the best
choice to securely store large amount of logs.

8.2 Regulatory Compliant Cloud

Auditability is a vital issue to make the cloud compliant
with the regulatory acts, e.g., SOX [19] or HIPAA [20].
The SOX act mandates that the financial information must
reside in an auditable storage, which the CSPs cannot provide
currently. Business organizations cannot move their financial
information to the cloud infrastructure, as it does not comply
with the act. As clouds do not comply with HIPAA’s forensic
investigation requirements yet, hospitals cannot move their
patients’ medical information to a cloud storage. Preserving
the logs and the proofs of the logs securely will definitely
increase the auditability of the cloud environment. Using
our scheme, it is possible to store and provide any types
of logs from which we can get all the activities of cloud
users. Business and healthcare organizations are the two most
data consuming sectors; cloud computing cannot achieve the
ultimate success without including these two sectors. These
sectors are spending extensively to make their own regulatory-
compliant infrastructure. A regulatory-compliant cloud can
save this huge investment. Hence, we need to solve the audit
compliance issue to bring more customers in the cloud world.
Implementing SecLaaS can help to make the cloud more
compliant with such regulations, leading to widespread adoption
of clouds by major businesses and healthcare organizations.

9 CONCLUSION

To execute a successful forensics investigation in clouds,
the necessity of logs from different sources, e.g., network,
process, databases, is undeniable. Since today’s clouds offer
very little control compared to traditional computing systems,
investigators need to depend on CSPs to collect logs from
different sources. Unfortunately, there is no way to verify
whether the CSP is providing correct logs to the investigators,
or the investigators are presenting valid logs to the court.
Moreover, while providing the logs to the investigators, CSPs
need to preserve the privacy of the cloud users. Besides
protecting the cloud, we should also focus on these issues.
Unfortunately, there has been no solution that can make the logs
available to investigators, and at the same time, can preserve
the confidentiality and integrity of the logs. In this paper, we
addressed this problem, which can have significant real-life
implications in law enforcement investigating cyber-crime and
terrorism. We proposed SecLaaS, which can be a solution to
store and provide logs for forensics purpose securely. This
scheme will allow CSPs to store logs while preserving the
confidentiality of cloud users. Additionally, an auditor can
check the integrity of the logs using the Proof of Past Log
PPL and the Log Chain LC. We ran our proposed solution on
OpenStack and found it practically feasible to integrate with
the cloud infrastructure. In future, we will implement SecLaaS
as a module of OpenStack.
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