
MANTICORE: Masking All Network Traffic via IP Concealment with OpenVPN
Relaying to EC2

Patrick Butler, Adam Rhodes, and Ragib Hasan

Department of Computer and Information Sciences
University of Alabama at Birmingham

Birmingham, AL 35294, USA
{pbutler, adrhodes, ragib}@uab.edu

Abstract—Malware and computer forensic researchers often
communicate with malicious servers, either directly or indi-
rectly, through the web browser or other ports utilized by
malicious software. Communication with this form of adversary
can sometimes necessitate the use of a proxy server in order to
conceal the true origin of the researcher’s traffic. Open source
projects such as OpenVPN currently offer a structured method
for establishing software based virtual private networks (VPNs)
between arbitrary clients and servers. Likewise, paradigms
exist which allow a user to proxy traffic from one end of a
VPN to another, effectively masking the origin of traffic being
sent to and from the client system. In this paper, we present
MANTICORE – a system that combines ideas from VPN
with the instancing functionality of a cloud computing system
in order to dynamically mask and reassign the apparent IP
address of a researcher’s system. We also present experimental
evaluation of our system on Amazon’s Elastic Compute Cloud
(EC2).

Keywords-cloud computing; security; forensics;

I. INTRODUCTION

There are currently a myriad of available servers online

which are intended to conceal the IP address of a user’s

machine. Web-based URL redirectors can provide proxy

functionality, but have fixed IP addresses that can be black-

listed by malicious servers such as phishing and malware

websites. Similarly, some options such as Tor servers, have

well known IPs, which can be easily blocked by malicious

servers. In fact, many phishing websites contain code that

monitors repeat visitors and blocks the IP addresses used by

suspected anti-phishing probes. To be able to thwart such

evasive maneuvers, it is necessary to find an efficient, low-

overhead, and low cost IP concealment service.

In this paper, we propose using both dynamic provisioning

of cloud instances and a virtual private network (VPN) to

provide an IP address concealment service for malware

researchers. In order to ensure that the proxy server(s) used

by the client are both safe and reliable, we utilize machines

connected to a cloud infrastructure.

The main contribution of this paper is to demonstrate

that such a concept is indeed feasible using commercial

clouds, and that the technique achieves comparable or better

performance than traditional approaches. By making use of

a cloud infrastructure, we have access to a large number of

independent IP addresses. Using our system, a researcher is

able to dynamically reassign the proxy server in use, which

is selected from a pool of available addresses on the cloud.

Because of the large scale of most cloud infrastructures,

this IP could have a vastly different geographical location

than previous proxies used by the client. In practice, this

means that if an administrator of a malicious server notices

a researcher’s interaction with their system and they block

traffic from the originating IP address, the researcher may

dynamically switch his IP to another address in the cloud

infrastructure, and therefore bypass the block.

The rest of the paper is organized as follows: Section II

provides background information and overview of related

research. Section III provides an overview of our system

architecture. Experimental evaluation of our proof-of-concept

system is presented in Section IV, and the findings are

discussed in Section V. Finally, we discuss future directions

in Section VI and conclude in Section VII.

II. BACKGROUND AND RELATED WORK

Many researchers have used different techniques to ac-

complish the same basic goal as the one intended for our

system. Anonymity and anonymous routing on the Internet

are not new ideas. One of the most popular and effective

techniques of anonymous routing is onion routing. Originally

developed by the Naval Research Laboratory, onion routing

involves many encrypted hops between the real source and

destination [1], [2]. Its suitability for anonymous connections

is a main motivation for the research that has been put into it

[3]. Onion routing is well known, but is still being improved

upon even today [4].

One of the most well known onion routing services is

Tor [5]. Tor has many useful features and is actively being

developed [6]. Its success is also a problem. Because of its

high profile nature, many attacks have been tested against

it [7]–[9]. Another large problem with Tor for our purposes

is that many malicious servers routinely blacklist the well

known Tor server IPs. If a researcher cannot connect to a

malicious server due to blacklisting of a Tor server, then

anonymity is useless.

2012 IEEE Fifth International Conference on Cloud Computing

978-0-7695-4755-8/12 $26.00 © 2012 IEEE

DOI 10.1109/CLOUD.2012.29

487

2012 IEEE Fifth International Conference on Cloud Computing

978-0-7695-4755-8/12 $26.00 © 2012 IEEE

DOI 10.1109/CLOUD.2012.29

487

Two other well known proxy methods are web based

proxies and browser based proxies. Browser based proxies

are straightforward. In a browser’s connection settings the

IP of a proxy is stored. This method forwards all the traffic

from the browser through the proxy. However, it does not

route other traffic, such as SSH or FTP through the proxy.

Web based proxies function in a slightly different manner.

When a client goes to a website that acts as a web proxy,

she is presented with a url prompt. The webpage the client

requests is then retrieved by the proxy. After adding the

webpage to an iframe and modifying the links, the page

is presented to the user. This is even more restrictive than

a browser based proxy. Only webpages requested by the

client through the web proxy are actually routed through

the web proxy. When a researcher wants to connect to a

malware command and control server, often browser traffic

is not what is used. SSH is just one example of the many

forms of communication that might be used. Also, the

communication is often on different ports than browser traffic.

This necessitates all traffic on all ports being routed through

the proxy in order for a system to be useful in this application.

The final type of proxy system is a VPN based proxy.

The VPN is set up with a client server model. The server

is set up to wrap and forward all traffic from the client

and pass incoming trafffic back to the client. This has the

benefit of forwarding all traffic on all ports. It also has the

benefit of creating a secure connection between the client and

the server. This prevents a malicious malware server from

performing a man-in-the-middle attack against the researcher.

The largest problem with a traditional VPN based proxy is

the static nature of the server. As discussed, if the malicious

server recognizes the same IP doing many things, it is highly

likely to be blocked. A traditional VPN based proxy has no

provision for changing its forward facing IP. It does not matter

that the malicious server does not know the researcher’s IP

if the researcher’s proxy has been blocked.

Our system is an extension of a VPN based proxy that

leverages the elastic nature of the cloud. We utilize two main

systems: Amazon’s Elastic Compute Cloud (EC2) [10] and

OpenVPN [11], [12]. Amazon’s EC2 is a very popular cloud

computing service provider. It allows users to instantiate

virtual machines (VMs) on demand. It is this virtualization

that makes EC2, or another cloud provider, advantageous.

Each time a virtual machine is instantiated, it is assigned a

unique IP based on Amazon’s proprietary algorithm. For our

purposes, they are psuedo-random, with a low probability

of getting the same IP by restarting a VM, despite Amazon

only having certain IP ranges available. This allows a user

to gain access to many IPs for a very low cost.

OpenVPN is an award winning open source VPN solution

[11], [12]. With servers and clients that run on Windows,

Mac, and Linux, it is an extremely popular tool. It can

create either a layer-3 based IP tunnel (TUN), or a layer-2

based Ethernet TAP that can carry any type of Ethernet traffic

running over User Datagram Protocol (UDP) or Transmission

Control Protocol (TCP) transports. OpenVPN runs a custom

security protocol based on SSL and TLS [13]. It also allows

for forwarding on both the client side and server side. IPsec

is the other major VPN protocol [14], [15]. It is widely

used by many vendors, but is much more complex so we

have favored OpenVPN. Many others have used some of the

techniques we are using. Because of a VPN’s strong security,

it is desirable to have an easy way to connect two separate

locations securely. Most research has been on making the

process easier while also making it more dynamic, flexible,

and programmable. Some of this work can be found in [16]–

[18]. Liu et al. propose using a VPN with a cloud in a slightly

different manner [19]. While we propose to use the elastic

nature of the cloud to dynamically change the external IP

of a VPN server, they propose to use the elastic nature to

serve clients with a VPN Software-as-a-service (SaaS) with

a pay as you go model.

As mentioned previously, our method differs substantially

from these approaches. Using the dynamic nature of the

cloud to easily change our perceived IP and OpenVPN to

secure the connection from the client to the server, we can

hide our identity while investigating malicious servers. These

two technologies have yet to be combined in this way.

III. SYSTEM DESIGN

In this section, we discuss details of our system model

and its different components.

A. Threat Model

The system assumes that the cloud service provider is a

trustworthy entity. It also assumes that any adversary involved

is a passive one that is unable to eavesdrop between the

client and the proxy server because of the assumed security

provided by the established VPN between them. The main

adversary is the malicious site or server that the researcher

trying to explore. The adversary can monitor and record

the IP addresses of incoming connections. The adversary’s

goal is to identify possible anti-phishing or anti-malware

researchers and blacklist their IP addresses.

B. System Architecture

We designed our system using several widely used off-the-

shelf tools and open source components. The servers were set

up on Amazon EC2’s micro instances, which are available

on the free tier. Each one was set up with an OpenVPN

server that ran on startup. The server uses a normal server

configuration except it pushes a free public DNS to the client.

The network address translation (NAT) table in the firewall

was modified to forward packets with masquerading between

the outside connection and the VPN connection.

On the client machine, an OpenVPN client was set up

to communicate with the servers. The one option of note

is the “redirect-gateway”. This sets up the forwarding of

488488

1, 2, 4
3, 7

5
6

Figure 1. Our system setup, startup, and basic usage. 1.) The researcher starts the instances on EC2. 2.) The researcher initiates a VPN connection
with a randomly chosen instance. 3.) The OpenVPN server on the instance responds to complete the VPN connection. 4.) The researcher requests
data from a server on the internet, such as a malicious one, via the VPN. 5.) The instance wraps the request and sends it on to the actual server.
6.) The server responds to the instance. 7.) The instance sends the response on to the researcher.

traffic through the VPN on the client side. Otherwise, it was

a standard OpenVPN client configuration.

Also on the client is the main program. Using Amazon’s

Java AWS SDK, it automates the entire process. After

pointing to all the required certificates and keys, the user

can press start. This starts up the VMs, waits for the

bootup process to finish, and then starts OpenVPN with

the parameters to connect to the OpenVPN server of a

random instance. Then a user can at any time switch or stop.

Switching disconnects from the VPN, picks another random

server, and connects to its VPN server. Then it restarts the

instance that is no longer being used. Stopping disconnects

from the VPN and stops all instances. The program also

shows the current IP that the user is masquerading as. The

basic steps in starting MANTICORE and sending data are

diagramed in Figure 1.

IV. EVALUATION

To test the feasibility of using a cloud based VPN, we

developed a proof of concept implementation. For our tests,

we used two cloud instances. This allows for fast switching

and cuts down on the potential costs of running the instances.

All of the testing of the system was done on the free tier of

Amazon Web Service (AWS) at no cost. The client was a

HP Envy 14 running Windows 7. All of the tests were done

with two micro instances running at Amazon’s Virginia data

center.

A. Operation Times

The first set of tests are designed to measure how much

time each of the three basic operations took under varying

conditions. Thirty different runs each consist of the startup

operation, one switch operation, and finally a stop operation.

The time for each operation in each run was recorded. These

tests gave us an idea on not only how long MANTICORE

took to start and stop but also approximately how long it

would take to get a new IP.

Once our operation time tests were completed, we first

graphed the individual runs, as seen in Figure 2. There was

a high amount of variability between the runs. No effort

was made to eliminate normal outside factors such as other

connections on the same WIFI network. Run fourteen in

particular has an abnormally high switch time. We are not

sure of the cause of this high switch time. While Figure 2

shows a lot of data, Figure 3 shows the average time of

each operation. The vertical bars represent one standard

deviation from the mean. As we can see, stopping is the

fastest operation and also the one with the least variability.

Starting is the slowest operation, but the variability is not

too high. Switching takes a medium amount of time but has

high variability.

B. Latency Penalty

We also wanted to run tests in order to determine how

much of a penalty is incurred by using MANTICORE as

opposed to a direct connection between the server and user.

Four web-servers were selected: Google, China Daily, and

two Skype servers. The Google server is located in Seattle,

489489

Figure 2. Start, switch, and stop times for 30 separate runs.

Figure 3. Average start, switch, and stop times.

490490

Figure 4. Average latencies over 1000 pings to each server normally and through MANTICORE. “Delta” reflects the difference between the two
latencies.

Figure 5. Average percentage increase in latency using MANTICORE compared to a normal setup.

491491

Washington. The China Daily server is located in Beijing,

China. The Skype server with an IP of 204.9.163.162 is

located in Toronto, Canada. The Skype server with an IP of

78.141.177.7 is located in Berlin, Germany. Each server was

pinged one thousand times normally and one thousand times

through MANTICORE.

After running the latency tests, the average latency for

each server with MANTICORE and without MANTICORE

was calculated. Next, the difference between the latency

with MANTICORE and normal was calculated. Finally, the

average of the differences was calculated. These results are

shown in Figure 5. Here, the average latency penalty is

around 22ms. This is very low and does not represent a

large portion of the total latency. Figure 4 shows how much

of the latency is incurred by MANTICORE. The tests with

Google appear to denote a poor performance by percentage,

but notice that the latency to Google started around 30ms, so

any increase would appear rather large. The average penalty

percentage is under 33%.

V. DISCUSSION

A. Analysis of Results

The results discussed in the above section can be accounted

for when we observe the location of our proxy servers. Since

our proxy is located in Virginia, this means that all traffic

must initially make several mandatory hops to reach the

proxy server before proceeding to the intended destination.

In practice, this means that if the geo-location of our proxy

is between the client location and the final destination,

there should not be a notable decrease in MANTICORE’s

performance when compared to a client connecting to the

intended destination directly using a traditional server-client

model. In contrast, when the shortest available path (as

determined by the acting intermediary routers) to the proxy

server transfers the network traffic away from its intended

destination, the proxy server must then send the traffic back

towards the final destination, causing it to potentially retrace

a portion of the path it took to arrive at the proxy originally.

B. Cost Analysis

When attempting to estimate the running cost for MANTI-

CORE, it is important to consider that the bandwidth usage

for its intended purpose is very small. It is not unreasonable

to assume that, if MANTICORE is used only for connecting

to malicious command and control servers through the use of

malware, less than 2 gigabytes of bandwidth will be used in a

single month by MANTICORE. In fact, this bandwidth can be

considered a reasonable upper bound even for a large number

of samples of malware. As of January 2012, Amazon charges

$0.12 per gigabyte (after the first gigabyte) of bandwidth

used after each month. Note that this bandwidth only applies

to outbound traffic, inbound traffic is not charged. Amazon

also charges $0.02 per hour of running time for a micro

on-demand instance on the EC2 cloud.

In the current model, MANTICORE operates with two

instances simultaneously which effectively increases the cost

of running the system to $0.04 an hour. It is currently assumed

that an analyst will be present when MANTICORE is in

use, so it is reasonable to assume that a single instance

of MANTICORE will be operating 40 hours or less each

week. Under these assumptions, the operating costs of

MANTICORE come to roughly $6.52 a month.

We now consider a more costly approach to the usage of

MANTICORE: the malware analyst instead uses MANTI-

CORE as part of an automated system that operates 24 hours

a day. For this approach, we assume that the upper bound

for outbound bandwidth from the EC2 server approaches,

but does not exceed, 6 gigabytes, resulting in a $0.60 cost

per month at the rate mentioned above. We know that the

operating cost for two micro-instances which run 24 hours

a day is $26.88 a month. Adding these costs gives us a

total cost of only $27.48 for operating a single instance of

MANTICORE 24 hours a day for a month. This is still a

small expense compared to the advantage MANTICORE

provides to malware researchers.

VI. FUTURE WORK

In future experiments, we hope to test methods to improve

the economic viability of the system as well as to explore

more methods for obtaining a larger variety of IP addresses

for the proxy server. In particular, we intend to experiment

with use-cases that would allow multiple clients to connect

to a VM instance on a proxy server in order to share its band-

width and thus reduce the overall cost of running multiple

clients through MANTICORE. To experiment with improving

the range of IPs used by the system, we may also run trials

in which servers in multiple geo-locations are accessible to

MANTICORE through Amazon EC2. Additionally, we desire

to develop functionality for MANTICORE which allows the

system to be used over multiple cloud service providers.

VII. CONCLUSION

In this paper, we have presented MANTICORE – a system

for dynamically masking one’s IP by utilizing the dynamic

and flexible nature of the cloud. MANTICORE is extremely

flexible. The instances can be located at any of Amazon’s

EC2 datacenters. Any number of instances may be used in

order to speed up the switching. Due to the low compute and

bandwidth requirements of the original problem, there is an

extremely low cost to operate the system. The flexible and

dynamic nature of the cloud allows for fast IP switching. The

latency penalty of running through MANTICORE is very

low. The connection to the proxy server is secure, preventing

man-in-the-middle snooping and attacks. Finally, this is a

legal method which is capable of utilizing a large, mostly

unknown set of IPs that is of a size which is likely rivaled

by only the largest of botnets.

492492

ACKNOWLEDGMENT

The authors would like to thank the UAB Digital Forensics

Center for allowing access to the facilities and infrastructure

at the UAB Phishing Database. Hasan was supported by

Amazon through an Amazon research grant, by Google

through a Google Faculty Research Award, by the Department

of Homeland Security, and by the Office of Naval Research

via Grant #N000141210217.

REFERENCES

[1] D. Goldschlag, M. Reed, and P. Syverson, “Onion routing,”
Communications of the ACM, vol. 42, no. 2, pp. 39–41, 1999.

[2] M. Reed, P. Syverson, and D. Goldschlag, “Proxies for
anonymous routing,” in Proc. of ACSAC, 1996, pp. 95–104.

[3] P. Syverson, D. Goldschlag, and M. Reed, “Anonymous
connections and onion routing,” in Proc. of IEEE S & P,
1997, pp. 44–54.

[4] S. Katti, D. Katabi, and K. Puchala, “Slicing the onion:
Anonymous routing without PKI,” in Proc. of ACM HotNets,
2005.

[5] J. Clark, P. Van Oorschot, and C. Adams, “Usability of
anonymous web browsing: an examination of Tor interfaces
and deployability,” in Proc. of SOUPS. ACM, 2007, pp.
41–51.

[6] C. Tang and I. Goldberg, “An improved algorithm for Tor
circuit scheduling,” in Proc. of ACM CCS, 2010, pp. 329–339.

[7] T. Abbott, K. Lai, M. Lieberman, and E. Price, “Browser-based
attacks on Tor,” in Proc. of PET, 2007, pp. 184–199.

[8] K. Bauer, D. McCoy, D. Grunwald, T. Kohno, and D. Sicker,
“Low-resource routing attacks against tor,” in Proc of WPES.
ACM, 2007, pp. 11–20.

[9] X. Wang, J. Luo, M. Yang, and Z. Ling, “A potential HTTP-
based application-level attack against Tor,” Future Generation
Computer Systems, vol. 27, no. 1, pp. 67–77, 2011.

[10] “Amazon Elastic Compute Cloud (EC2),” In http://aws.amazon.
com/ec2.

[11] P. Ferguson and G. Huston, “What is a VPN?” in Proc. of
OPENSIG, 1998.

[12] “Facts about OpenVPN,” In http://openvpn.net/index.php/
about/openvpn-facts.htm.

[13] “OpenVPN security overview,” In http://openvpn.net/index.
php/open-source/documentation/security-overview.htm.

[14] “IPSec charter,” In http://datatracker.ietf.org/wg/ipsec/charter/.

[15] J. Ioannides and A. Keromytis, “Network security and IPsec
(tutorial),” in Proc. of ACM CCS, 2000, p. 11.

[16] H. Hiroaki, Y. Kamizuru, A. Honda, T. Hashimoto, K. Shimizu,
and H. Yao, “Dynamic IP-VPN architecture for cloud com-
puting,” in Proc. of IEEE APSITT. IEEE, 2010, pp. 1–5.

[17] R. Isaacs, “Lightweight, dynamic and programmable virtual
private networks,” in Proc. of IEEE OPENARCH, 2000, pp.
3–12.

[18] P. Lago and R. Scandariato, “A TINA-based solution for
dynamic VPN provisioning on heterogeneous networks,” in
Proc. of IEEE TINA, 2000, pp. 13–15.

[19] Q. Liu and W. Gu, “An elastic public vpn service model based
on cloud computing,” in Proc. of IEEE ICSESS, 2011, pp.
290–294.

493493

