SASCloud: Ad hoc Cloud as Secure Storage

Shahid Al Noor, Md. Mahmud Hossain and Ragib Hasan
{shaahid, mahmud, ragib} @cis.uab.edu
Department of Computer and Information Sciences, UAB, AL 35294-1170

Abstract—With the emergence of high-speed 4G networks
along with reachable Wi-fi systems, cloud computing frameworks
can greatly leverage mobile domains. However, obtaining a
temporary storage service in a communication-challenged area
is difficult due to the unavailability of any secure third-party
cloud systems. Although the existing ad hoc cloud architectures
facilitate distributed computation and sensing operations, such
systems fail to deliver secure ad hoc storage as a service
when a client requests for secure storage. The absence of a
proper centralized monitoring system in the existing ad hoc
clouds is a major obstacle for convincing a client to trust
the neighboring mobile nodes for content offloading. In case a
client and an outsourced node get disconnected, retrieving the
offloaded contents along with ensuring their confidentiality and
integrity becomes non-trivial. Additionally, providing a feasible
and justified monetary incentive is a complex process for such
ad hoc mobile frameworks. In this paper, we propose SASCloud,
a centrally controlled ad hoc cloud system that provides a secure
and reliable storage service for mobile clients. Our proposed
system uses the contextual information of mobile users along
with partial environmental knowledge and forms a temporal
cloud using the resources of neighboring mobile devices. Along
with the detailed reasoning of possible threats in our model,
we provide a secure framework for content distribution and
retrieval. We provide extensive analysis of our model using
simulated experimental modules and demonstrate the feasibility
of providing a secure storage service in a network-disconnected
area using SASCloud.

Keywords-DTN, Mobile Cloud, Ad hoc Cloud, Distributed
Storage

I. INTRODUCTION

Mobile cloud computing enhances the storage and computing
power of mobile devices by leveraging third-party cloud sys-
tems for data and computation offloading [1]. The introduction
of low latency and location-aware fog systems reduces the
time and cost associated with incorporating such mobile cloud
systems [2]. Most of those mobile cloud systems fail to provide
cloud services in a network-disconnected area, such as an
area affected by a natural disaster. Although several ad hoc
cloud systems have been proposed considering the neighboring
mobile devices’ computing power, such systems are unable
to serve when the client requests storage as a service. On
the other hand, the existing delay-tolerant networking (DTN)
approaches offer temporary storage service but due to the lack
of centralized control, cannot pledge the retrieval of client’s
contents in time. Therefore, we need an efficient and secure
storage-as-a-service for such network disrupted environments.

An ad hoc cloud is composed of mobile nodes with no-
exclusive and intermittent resources, where nodes do not have
any pre-commitment to each other and can accept multi- faceted
tasks [3]. Some of the volunteer mobile computing platforms,
such as Hadoop Apache [4], BOINC [5], CloneCloud [6],
CellCloud [7], and GEMCloud [8], considered energy efficient
mobile devices to provide a feasible and energy efficient

mobile cloud. Although they provide secure crowd-source based
platforms, such systems require continuous Internet connection
between the mobile nodes and the central management system
to distribute the tasks among nodes and receive results from
them. Therefore, it is not possible for the devices in a rural
setting to participate in such systems. Moreover, even in urban
areas, we cannot expect the continuous presence of a wireless
access point. On the other hand, researchers have proposed
the formation of opportunistic cloud systems by considering
the neighboring mobile devices and divide and distribute
the resource-intensive tasks, such as data collection, image
processing, etc., among those devices [9-13]. Although those
architectures do not require any Internet connection, there exists
a high risk of security as compared to hiring a trusted cloud
system. Without the continuous presence of any centralized
authority, clients often lose control over the outsourced data,
fail to detect dishonest mobile devices, and protect the sensitive
information from the attackers.

In this paper, we propose SASCloud, an Adhoc cloud system
that provides Secure Storage service in a network disconnected
area. Initially, a mobile user registers his mobile device with the
SASCloud central authority (CCA) and becomes a Registered
Mobile Node (RM-Node). Each RM-Node also receives a
Performance Point (PP) that specifies its trustworthiness within
the framework. Also, SASCloud has some registered cloudlets
that are used for content collection and integration. When
any client requires the storage service, it searches for some
interested neighboring RM-Nodes i.e., the interested RM-Nodes
within its Bluetooth or wifi range and forms an ad hoc cloud by
selecting some of those RM-Nodes. It divides and distributes
the content among the RM-Nodes in that ad hoc cloud. When
any of the RM-Nodes in that ad hoc cloud meets any cloudlet
while moving to a different physical location, it delivers its
content to that cloudlet. Each cloudlet integrates the received
contents and provides the integrated content to the CCA. The
CCA combines all the contents from various cloudlets and
delivers the resultant content to the client.

However, the primary challenge of building the SASCloud is
ensuring the integrity and confidentiality of clients’ outsourced
contents. Second, motivating the user for participation, and
dividing and distributing the contents among them are complex
tasks. Third, ensuring the authenticity of client and RM-Nodes
is very challenging. Finally, we require a proper verification
mechanism when either a client or RM-Node denies sending
or receiving of any offloaded content.

Contributions: The contributions of the paper are as follows.

1) To the best of our knowledge, SASCloud is the first

attempt that forms an ad hoc cloud for providing storage
service with a centralized control for secure content
distribution and retrieval.

2) We propose a black box map-based content distribution

algorithm for efficiently distributing clients’ contents
without revealing RM-Nodes’ future location information
to the clients.

3) We demonstrate the feasibility and performance of our
proposed SASCloud model via extensive simulation and
analysis of experimental results.

The rest of the paper is organized as follows. In Section II,
we illustrate the motivation of our research work followed
by some of the related research work in Section III. We
describe the underlying SASCloud architecture, and the detailed
operational and messaging model in Sections IV, V, and VI
respectively. We discussed the possible threats in our proposed
model along with the countermeasures in Section VII followed
by the experimental result in Section VIII. Finally, we discuss
and conclude our work in Section IX.

II. MOTIVATION

The existing mobile cloud systems primarily focus on
distributing task computation among the high-performance
mobile devices. In addition to outsourcing computation, users
also require content outsourcing when their devices do not
have enough space to accommodate new contents. Although
several cloud-based storage/backup services, such as iCloud,
Time Machine, and Dropbox facilitate content offloading, those
services require continuous Internet connectivity to upload
contents to the cloud. However, a vast number of mobile users
do not use any data plan. Furthermore, we cannot ensure
network connectivity in all places especially in rural areas or
regions affected by natural disaster. Therefore, users search for
a nearby storage backup system.

Consider that John is visiting a historic place and wants
to take several photos of the place using his smartphone.
He finds that the smartphone does not have enough space
to accommodate new pictures. Unfortunately, John did not
notice earlier that his data plan was expired. As a result,
he cannot take the advantages of the cloud-based storage
services for temporary storage backup. However, John can
use the SASCloud storage backup service to backup his
contents temporarily. The SASCloud uses the neighboring
mobile devices as a form of storage backup.

Recent incidents, such as mass email deletion by Gmail [14],
Apple’s MobileMe post-launch downtime [15], and T-Mobile
Sidekick personal data loss [16] indicate that ensuring the
integrity of data even for a traditional cloud is very challenging.
In the case of an ad hoc cloud, the problem is even more severe,
since a client does not have any active control of their data
as soon as they transfer those to the crowd-sourced devices.
For example, the contacted mobile devices that are used as
a temporary data storage might just delete the data or return
fake data to the client. Hence, protecting the outsourced data
from loss and ensuring the integrity of them is indispensable.

III. RELATED WORK

Researchers proposed several approaches for distributing
tasks among the neighboring mobile devices. Vehicular ad
hoc network (VANET) is one such approach where a wireless
onboard unit (OBU), a roadside unit (RSU), and an authen-
tication server (AS) are installed in each vehicle participated
on computation [17]. However, installing those components in

Fig. 1: SASCloud Architecture

each mobile device is very expensive. One major flaw in their
proposed VANET system is, the vehicles are considered trustful
based on the recommendation of a law executor or other secure
vehicles. However, finding a law agent or trusted vehicle for
participation, or verifying the signature of a law trustee from a
large number of law executors is tough. Mobile cloud is widely
used for running several complex applications in a resource-
constrained mobile device by hiring some other mobile devices
for task offloading [18]. Existing mobile cloud systems can be
classified into two categories; i) partially controlled, ii) fully
controlled. In the partially controlled system, mobile devices
use third party networking infrastructure for task/result transfer
whereas, work distribution and monitoring, and negotiation
during the hiring of other mobile devices are done by the
client itself [19-22]. However, motivating the mobile users
for participation, building a trust relationship with them, and
monitoring the task progression in such mobile cloud system is
tough. Crowdsourcing is one popular approach for motivating
participants where some portion of a task is outsourced [23].
It is used in several areas, such as Al [24], business [25],
construction [26], etc. In a fully controlled mobile cloud system,
a central system is used for task distribution, monitoring, and
organization, and verification of security related issues [6—
8, 27]. The problem with this type of system is that it requires
a continuous connectivity with a central system. Therefore,
this approach does not work if a client seeks for a prompt
cloud service in a network-disconnected area. To perform
complicated operations in a network uncovered area, some
researchers proposed an ad hoc mobile cloud system where the
client can form a cloud on demand after communicating with its
neighboring devices and hire their resources for task processing
[28, 29]. Although such ad hoc cloud system is easy to form
and requires less time for task processing, creating the trust
relationship with the neighboring devices is very challenging.
Noor et al. proposed a context-based delay tolerant cloud where
the context of the nearby mobile devices is used for efficient
content delivery [30]. Additionally, a central control point is
used for verifying the authenticity of the participated nodes
and their generated result. However, they just considered the
computation offloading and did not address anything about the
integrity of the outsourced data in case client would like to
take storage service from the cloud.

IV. ARCHITECTURE

The conceptual architecture of SASCloud is shown in figure
1. We use the architecture proposed in [30] as the foundation
of our proposed model. The users need to register their mobile
devices with Cloud Central Authority (CCA) to participate

CloudLet

CloudLet
=
(x<6,v6)
CloudLet
a1

=
RM-No CloudLet
>
R <7.v7)
CloudLet
2
(x2,v2)
CloudLet

CloudLet @
=
(x3,vy3)

Fig. 2: Process of Location Collection

x<a,ya)

1

(o0.0)
RM-Node
(xb,yb)

on the cloud formation. The registered bidder receives a
performance point (PP) that specifies how reliable that user is
for a task. The PP is increased or decreased depending upon
their performance in the previously assigned job. A client in a
critical area initiates bidding by sending a query message and
the interested RM-Nodes reply to the client. The client verifies
all the RM-Nodes’ information, selects some RM-Nodes, and
forms an ad hoc cloud. The client orders the contents based on
their priority and divides and distributes them among the RM-
Nodes based on the total interested RM-Nodes, the context of
those RM-Nodes, and the available storage in each RM-Node.
When an RM-Node inside the ad hoc moves to a different place
can further form another level of ad hoc cloud considering the
neighboring interested RM-Nodes in that region, and divide
and distribute the received contents further among the RM-
Nodes in the second level of that ad hoc cloud. When any of
the RM-Node in the ad hoc cloud leaves the disconnected area
and meets a cloudlet, it delivers its received contents to that
cloudlet.

A. RM-Node
When a user registers its device and becomes an RM-Node,

it receives an id and an initial PP. Besides, it also receives
a temporary certificate from SASCloud through its assigned
cloudlets. Once the certificate expires, the RM-Node has to
request for certificate renewal to any designated cloudlet of
the SASCloud. The performance of the RM-Node is evaluated,
and the PP is updated after the evaluation. The corresponding
cloudlet can issue a new certificate during that assessment time.
Furthermore, the last cloudlet any RM-Node meets before it
reaches to a network disconnected region is considered the
representative cloudlet (RC) for that RM-Node. However, if
the bidder moves to the coverage area of another cloudlet, that
cloudlet becomes its new RC and the information attached
by the previous RC is invalidated. As shown in figure 2, the
bidder’s first RC was cloudletl when it was in regionl, and as
soon as it moves to region2, cloudlet1l’ becomes its new RC.

B. Cloudlet
Just like a cellular base station, the cloudlet in SASCloud

can communicate with the RM-Nodes using any mobile
infrastructure. Besides, it has sufficient memory for storing
the RM-Nodes’ delivered contents and a decent amount of
computational power for performing any resource-intensive
operations. When an RM-Node is inside the coverage area
of a cloudlet, the cloudlet attaches the location coordinate
information of itself and n of its randomly selected neighbors.
We refer this location information as Representative Cloudlet
Context (RCC).

If we observe figure 2, we see that the RC of the RM-
Node is cloudletl. Cloudletl finds five more cloudlets within

I 1km »
Region G - - -
-
Regio:A Destination
T =T -
Region F -
- Region B
Client
- - -
- - -

Region E

Region D Region C

- = = = &» Bidder’s Direction
® Ccloudiet

Fig. 3: Process of finding the nearest cloudlet

its circular coverage area of radius R. The RC sends the
coordinate information of itself and all the other five cloudlets
to the RM-Node. The RM-Node can easily interpolate those
coordinates information from its current location. Since an
RM-Node is continuously moving, the interpolated values will
be different for different location. Updating the information of
all the other cloudlets with continuous changes of location is
expensive. Hence, the RM-Node only updates the coordinate
information of the RC with its new location while the other
cloudlet location is updated reactively when any other RM-
Node requests information during the ad hoc cloud formation.

V. OPERATIONAL MODEL

A. Predicting the time of meeting the nearest cloudlet

Each RM-Node can carry a portion of world map just like
a mobile GPS. We propose two approaches for finding the
nearest cloudlet and determining the time to meet that cloudlet.
Node based approach: In this method, an RM-Node receiving
any content estimates the time to meet the nearest cloudlet on
its way. The RM-Node first sends its RCC information and
requests client to send any other RCC information that it is
currently carrying. However, instead of sending all the collected
RCCs, the client can send only some them based on the RM-
Node’s direction of movement. As a sample scenario, we can
consider figure 3 where currently a client has information of 7
RCC that is collected from 7 different RM-Nodes.

From the analysis of the direction of movement of the RM-
Node, client predicts that the RM-Node will visit either region
A or region B. Therefore, it just sends the RCC of those two
regions. In addition, in case the RM-Node does not hold the
map, it can request the client for the map. Based on the map
and collected RCCs, RM-Node estimates its possible time to
meet a cloudlet. Suppose, the RM-Node’s average speed is V
and the RM-Node is planning to stop temporarily in S number
of places with an average stopping time of T, before meeting a
cloudlet C at distance D according to the map. Then the time
to meet the nearest cloudlet is, T, = D/V + S * T.

One advantage of this approach is that the client does not
need to reveal their destination address. Another advantage is
that since RM-Node knows its future location, the velocity of
moving, and intermediate stopping point, therefore, it can more
accurately predict the time it might meet the nearest cloudlet.
On the other hand, one major disadvantage of this approach is
that predicting the closest cloudlet and the time to meet that
cloudlet is done by RM-Node. Hence, the RM-Node consumes
more power because of some additional computation. Another
drawback is that RM-Node might intentionally deliver false

Client

listOfMaps

Fig. 4: Blackbox based approach for ensuring privacy during context
sharing

information about the time of meeting the cloudlet to receive
the content from the client. Since the client has no control
over the computation, therefore, it is not possible to validate
the information provided by the RM-Node.

Client based approach: The client predicts an RM-Node’s
nearest cloudlet and the time to meet that cloudlet based on
the map and contextual information collected from the other
RM-Nodes. We propose algorithm 1 for determining the time
the RM-Node will meet its nearest cloudlets:

Algorithm 1: Cloudlet Meeting Time Prediction (CMTP)

Input: status

Input: listOfMaps

Input: angle

Output: time

1: var reduceListO f M aps=getReduceMapList(listO f M aps, angle)
2: for currentStatus in status do

3: for map in reduceListO f Maps do

4: var listO fCloudLets=map.getCloudLetList()

S: for cloudLet in listO fCloudLets do

6: if isLocInCloudLet(cloud Let,currentStatus.getLocation()) then
7: return currentStatus.getTime()

8: end if

9: end for

10: end for

11: end for

12: return Null

Here, the status variable is a list of < loc, time > pairs that
indicate RM-Node’s coordinate position in the map at every
ot interval. These coordinates are matched with the cloudlet
position in the collected RCC. If a cloudlet is found in the
RM-Node’s possible future path, the corresponding time is
extracted from the < loc, time > pair.

One major problem with this approach is that the client
can track all the future location of an RM-Node. The lack
of privacy for the RM-Nodes might reduce an RM-Node ’s
willingness to participate in the cloud formation. However, we
can use the black box based approach as depicted in figure 4
to ensure the RM-Nodes’ privacy.

As shown in figure 4, instead of providing the location
information directly, a RM-Node now sends the encrypted
location information. The pre-shared key K between the RM-
Node and the CCA is used for encryption. The black box
program is installed in every RM-Nodes’ device. This program
in addition to containing the CMTP algorithm also provides a
hash table that maps each RM-Node’s id with the pre-shared
key. The black box is designed in such a way that the client
neither can see nor can manipulate anything inside the black
box. In other words, the black box only takes encrypted location
information as input and delivers time as output without
revealing any key or location information.

B. Evaluation of bidder’s performance point (PP)

The PP varies between 0 and 1 based on RM-Node’s
performance on its previous tasks. Initially, the registered
RM-Node receives an initial PP of 0.5. From the map and
path information available to the client or the RM-Node, an
approximate time t is computed for the RM-Node to deliver
the content to a nearby cloudlet. Suppose an RM-Node delivers
its content at to time. Then after the delivery, an award point
(AP) is provided to the RM-Node as follows:
lifto <=2xt 08if 2%t <to<=4xt
06ifdst<to<=6%t 0.4if6%t<to <=8t
0.24if 8xt<to <=16x*t 0 otherwise

We use the strategy applied by ICC for their team rating
to compute the RM-Node’s new PP [31]. According to the
strategy, the RM-Node’s new PP will be increased a small
amount if the AP obtained for the current task is better than
its current PP. On the other hand, it will lose more point if the
AP is smaller than the current PP. For the first scenario where
we assume that the AP is more than the current PP, the new
PP is evaluated using the following equation:

PP,e, = min(l, PP + PP x (AP — PP))

We use the equation of exponential decay for the second
scenario when the AP<PP and computes the new PP value as,
PPy = PP x (e A(PP=AP)

RM-Node will try to perform more sincerely because losing
more points for their bad performance implies it will receive
less money for storing any content in future.

AP =

C. Formation of Ad hoc Cloud

At the first phase of the ad hoc cloud formation, the client
broadcasts a node discovery message (NDM) for knowing the
interested neighboring RM-Nodes and their status. The query
lifetime (QL) is attached in the NDM that specifies the time
by which an RM-Node has to response in order to participate
in the cloud formation. The client queries the RM-Node for
their PP, available storage, and the time to meet the nearest
Cloudlet (node based approach) or the encrypted information
of the coordinates (client based approach) once it receives the
RM-Node’s response within that time interval. The client uses
the node selection algorithm as depicted in algorithm 2 and
chooses some RM-Nodes as members of the ad hoc cloud.

Algorithm 2: Node Selection Algorithm

Input: listOfNodes

Input: listOfContents

Input: levelOfRelibility

Output: listOfAllocatedContentsToNodes
1: var sortedListO fContents=sortContentsBySensitivity(listO f Contents)
2: var sortedListO f Nodes=sortNodesByPP(listO f N odes)

3: for content in sortedListO fContents do

4. var sensitivity=content.getSensitivity()
S: var currentSensitivity=0
6: while sortedListO f Nodes.hasNext() &
currentSensitivity<sensitivity*levelO f Reliability do
7: var currentNodes=sortedListO f N odes.next()
8: if content.getSize()<=currentN ode.getAvailableResource() then
9: listof AllocatedContentsToN odes.add(<
content, currentNode >)
10: currentN ode.takeResource(content.getSize())
11: currentSensitivity=currentSensitivity+currentN ode.getPP()
12: end if
13: end while
14: end for

0123456789012345678901234567 8901

viTl c | ID (L1) | b2 |ib3)
Time Stam,

RCoAP

Padding
DTLS

\ UDP \

Fig. 5: Protocol Suite
At first, the client divides its contents into several segments

and attaches a level of sensitivity with each division. The level
of sensitivity indicates how much important that part is for the
client. The level of sensitivity varies from 1 to 10. Additionally,
the client specifies how much overall reliability it wants for
the contents. The degree of reliability can be any number
from O to 1. The number of RM-Nodes selected as a backup
for a segment depends on its sensitivity and reliability. The
client first sorts all the interested RM-Nodes according to their
PP. The client chooses an RM-Node, verifies whether it has
enough resource to hold the particular segment, and selects
that RM-Node for offloading that segment if it has enough
available resource. For the same content client might choose
another RM-Node from the sorted list if the desired level of
reliability is not achieved. For example, consider that the level
of sensitivity for any content is 8, the degree of reliability that
client wants is 0.2, and the size of the segment is 25 MB. Then
the client can take two RM-Nodes with at least 25 MB of free
storage in each of them and a PP of at 0.9 and 0.7. However,
the client can pick three RM-Nodes with at least 25 MB of
free storage along with a PP of 0.6 in each of them.

VI. PROTOCOL AND MESSAGE FORMAT
A. Communication Protocol

We propose Reduced Constrained Application Protocol
(RCoAP) that uses the similar packet structure as used in
CoAP [32]. We adopt DTLS protocol, which is placed between
the RCoAP and unreliable but efficient transport layer protocol
UDP for ensuring transport security [33, 34]. UDP saves
devices’ battery power by allowing longer sleeping time for
devices, sending low overhead small size packets, and ensuring
more little triggering time for the wake-up and transmission.
In addition to one-to-one message forwarding, RCoAP allows
one-to-many transfer, which is required to store multiple copies
of content in various RM-Nodes to achieve higher reliability.
The proposed protocol suite is depicted in figure 5.

B. SASCloud Messaging Model

Each RCoAP message is comprised of three parts: header,
time, and content.
Message Header: The message header has four sections as
shown in figure 5. The first two bits define the version number
of the RCoAP. The version number changes with the advent of
newer protocol. The next two bits are used to identify the type
of message. Just like the actual CoAP, there can be four types
of message, such as Confirmable (00), Non-confirmable (01),
Acknowledgement (02), and Reset (03). However, in SASCloud,
every message is confirmable and requires acknowledgment

from the receiver. Unlike CoAP, we use a fixed size token field,
therefore SASCloud message header does not have any TKL
field. The next four bits are termed as code field that is used
to identify the category of a message (see Table I).

The rest of the 24 bits are used as message id to distinguish
one message from another. In SASCloud, content received by
an RM-Node can further be divided and distributed among a
set of newly hired RM-Nodes in the next level. This process
can continue to several levels. Therefore, a simple sequence
number cannot be used as a message id for the divided contents.
Another RM-Node can assign the same message id to another
level. Hence, we apply the internet IP subnetting concept for
message id generation. We allow a maximum of a three-level
division of a message or content.

Initially, all the 24 bits of the message id is set to 0. When
the content is divided for the first time into segments, a 12 bit
sequence number is generated and assigned to the first 12 bit
of the message id field for identifying those segments. If any
of those segments is divided further (second level division and
distribution) then the next 8 bit is used to these divisions. The
remaining 4 bit is set if any of these contents are divided further
on the third level. Hence a Cloudlet can easily identify the root
of content which was divided and distributed on multiple levels.
The Cloudlet merges such fragmented contents to construct
the complete content.

Code Interpretation (Category)
1 Rating Point Request
2 Rating Point Delivery
3 Map Information Request
4 Map Information Delivery
5 Request for Content Send
6 Confirmation to Content Send Request
7 Content Delivery
8 Content Reject

TABLE I: Code and Corresponding Representation
Message Timestamp: The 32-bit timestamp field is used to
represent the sending date and time of a message.

Content: The variable length content field is used to specify
user’s contents. The size of the content field is determined

during the content segmentation process.
VII. SECURITY OF SASCLOUD
In this section, we present the security requirement of

SASCloud. We also identify the vulnerabilities and threats that
could be associated with our proposed system. Furthermore,
we provide mitigation strategies for all of those threats.

A. Security Requirements

1) Authentication: A malicious node can impersonate a
legitimate RM-Node to perform malicious activities. A client
needs to ensure that the RM-Nodes are trustworthy. The RM-
Nodes also require verifying the authenticity of the client. This
can be achieved through a mutual authentication scheme.

2) Confidentiality: In SASCloud, the contents of a client are
stored in the neighboring RM-Nodes. It needs to be ensured
that the contents are not disclosed to unwanted parties.

3) Integrity and content verification: An RM-Node can
delete or modify the received content. A Client should be able
to verify the integrity of the delivered content.

4) Non-repudiation: A client can deny a previously dis-
tributed content. Similarly, an RM-Node can deny the previ-
ously received content. Therefore, we need to have a scheme
to verify such claims.

5) No Eavesdropping: The communications between a client
and an RM-node should be secure. A malicious node can
receive a content by eavesdropping and later can claim that
the client hired the malicious node for storing the content.
Therefore, communication channel needs to be secured.

B. Threat Model

Malicious RM-Node: An RM-Node might fail to deliver a
content to the destination Cloudlet. The failing RM-Node will
receive negative reward point (RP) by the Cloudlet. However,
to avoid the negative RP, the RM-Node needs to prove that
the client did not send any content.

Malicious Client: A malicious client can deny the content that
it forwarded before to an RM-Node. Moreover, the client can
defame the reputation of the RM-Node by not collecting the
forwarded content from the cloudlet. In order to do that, the
client needs to prove that the RM-Node has failed to deliver
the content.

Malicious Cloudlet: A cloudlet might fail to transfer content
to the client, which was given by an RM-Node. The failing
cloudlet can claim that the RM-Node did not transfer the
content for avoiding the penalty. The cloudlet can also argue
that the client has received the content without actually
delivering that content.

Colluding RM-Node and Cloudlet: A failing RM-Node can
collude with a cloudlet to avoid penalty from the Client. The
failing RM-Node can offer monetary incentives to cloudlet, so
that the cloudlet does not assign negative performance point.
Similarly, a failing cloudlet can also collude with an RM-Node
to avoid negative reputation.

Colluding Client and Cloudlet: A malicious client can
collude with a cloudlet to penalize an innocent RM-Node.
Both the client and the cloudlet can claim that the victim
RM-Node has failed to deliver content.

Colluding Client and RM-Node: A malicious RM-Node can
argue that it has received content from the client and provided
the content to the victim Cloudlet. The malicious client supports
the false claim. Here, both the client and the RM-Node try to
defame the reputation of the innocent cloudlet.

C. Mitigation Strategy

A client would like to ensure the confidentiality and the
integrity of the distributed contents. Therefore, content can be
encrypted before delivering to any hired RM-Node to ensure
confidentiality of the encrypted content. To ensure the integrity
of the big data in a cloud, Liu et al. proposed a digital signature
based scheme [35]. We also apply a similar but lighter digital
signature based strategy in SASCloud to mitigate the threat
scenarios. Figure 6 shows the interactions when a Client transfer
any content to an RM-Node. The interactions during the content
delivery process by the RM-Node, and the content receiving
process by the Client are presented in figure 7.

Content Transfer Process: In step 1 and 2, the client and the
RM-Node perform certificate-based mutual authentication to
authenticate each other. In step 3, the client and RM-Node
establish a secure channel using a shared key for further
communications. In step 4 and 5, the client encrypts the content
and forwards the encrypted content to the RM-Node. In step 6,

RIM-Node
A 1. Certificate Exchange i

2.a \erify Cert. 2.b \erify Cert.
3. Establish Secure Channel

Lt
E‘P 4. Encrypt Conent (Cp) Secure Channel

5. Send Cg '_

6. S,= Sign (H(Cp) SK,) <E]

8. \Verify (S, PK,) & Store S,
9. S;= Sign (H (Cg), H(S). SK,)
10. ACK || S,
11. Verify (S, PK.) & Store S, Q[‘J

7.Send S,

Fig. 6: Secure content transfer security at origin

the RM-Node creates a hash (H(Cg)) of the received content
and signs the hash using its private key (SK,.). In step 7, the
RM-Node sends an acknowledgement (AC K) and attaches the
signature (S,.) with the ACK. In step 8, the client verifies the
signature using the RM-Node’s public-key (PK,) and ensures
that the RM-Node receives the entire content. In step 9, the
Client creates a signature (S.) using its private key (SK.). The
inputs of the signature scheme are the hash of the content and
the hash of the signature of the RM-Node. In step 10, the client
sends a signed acknowledgment to the RM-Node. In step 11,
the RM-Node verifies the signature using the client’s public
key (PK.) and stores S, for future reference. The RM-Node
also stores the certificate of the client (Cert,).

RM-Node
Vs 7

5 1. Cell Cert, [IS, || S¢ || Cert,
4. ACK || Scioudiet
5. Stores Sgjgudiet

Cloudlet

Client

Content Delivery

2. \erify S,, S,
3. Store < H(Cg), C-Data>

6. Request || H(Cg)
|j>7. Retrieve H(Cg)
8. Send Cg
9. ACK || S aci

i Content Receiving

=

Fig. 7: Secure content delivery and receiving security at destination

Content Delivery and Receiving Process: In step 1, the
RM-Node delivers the encrypted content, and signatures and
certificates of the RM-Node and client to the cloudlet. In
step 2, the cloudlet verifies the signatures of the RM-Node
and client. The cloudlet discards the content if any of the
signatures does not match. In step 3, the cloudlet stores the
hash and the metadata of the content (C' — Data), such as
RM-Node’s id, Cg, signatures of the Client and the RM-
Node. In step 4 and 5, the cloudlet creates a signature
(Scloudlet = S7gn(H(H(CE)||C - Data)7 SKcloudlet))a and
sends the S¢jpudiet to the RM-Node. The RM-Node stores the
Scloudlet as proof that the cloudlet has received the content. In
step 6, the client sends a request message to the cloudlet along
with its certificate and hash value of the content. In step 7, the
cloudlet retrieves the C' — Data using the provided hash and
verifies S.. In step 8 and 9, the cloudlet delivers the content
to the client and receives a signed acknowledgment (S¢_qcx).
The cloudlet also stores the signature as proof that the client
has received the content.

D. Security Analysis

The failing RM-Node cannot claim that the client did
not offload the content, since the client stores the content

1km
Jood B B

SientQ

Ly S SEE

Fig. 8: Simulation Environment

forwarding proof S,.. Besides, the RM-Node cannot defame a
cloudlet as it does not have the content delivery proof, S¢;oudiet-

The malicious client cannot deny the content the client
forwarded to an RM-Node or the content that it received from
a cloudlet. The RM-Node has S, as a proof for the forwarding
content. Similarly, the cloudlet has the evidence S._,qx for
the received the content. A failing cloudlet cannot claim that
the client received the content for avoiding the penalty since
the cloudlet cannot show the client’s signature S._,ck-

For the same reason, the colluding RM-Node and the cloudlet
cannot charge an innocent client, who did not receive the
forwarded content. The colluding client and the cloudlet cannot
penalize an innocent RM-Node, since the RM-Node stores the
signature S¢jouqret- The colluding client and the RM-Node
cannot defame an innocent cloudlet, since the RM-Node would
not be able to show the signature S.joyqiet-

VIII. SIMULATION SETUP

We design our model using the Opportunistic Network
Environment (ONE) simulator, a Java-based open source
simulator for delay tolerant network [36]. The RM-Nodes
communicates with each other using wifi interface that has a
transmission range of 50 meters. On the other hand, the cloudlet
has a transmission range of 500 meters. We assume that the
client is stationary and does not belong to the coverage area of
any cloudlet whereas the RM-Nodes are moving randomly 2
to 4 m/s speed with a pause time of 1 to 120 minutes at some
random intervals. Our model is simulated using the Helsinki
city map, and we assume that the boundary of the city is
covered by six cloudlets whereas there is no cloudlet in the
center part of the city. Our simulation environment is shown
in figure 8.

We assume that client has 1000 contents each with 64 KB
size and with different level of sensitivity. The RM-Nodes’ PPs
are also randomly generated between 0 to 1. We use Raspberry
Pi devices with different configurations, such as Pi-1 and Pi-2,
as Clients and RM-Nodes. We use a power meter to record
the power consumption for sending and receiving a discovery
message of size 128 bytes. We find that the power drop for
sending the discovery message is from 10mW to 20 mW. Next,
we record the transmission time for sending a maximum sized
UPD message of length 64KB. We also record the power
consumption for carrying the maximum sized UDP payload.
We find that the transfer time varies from 0.1 to 0.2 seconds,
while the corresponding power consumption lies in between 100
to 200 mW. We use this information to measure the time and
the cost associated to content offloading. We provide monetary
incentive corresponds to the power consumption cost during
the content transferring process. Additionally, we assume that

an RM-Node receives 10 * P amount of financial incentive for
holding a content of 64KB size for one minute, where P is the
performance point of the RM-Node. In our first experiment, we
measure the performance of SASCloud by varying the number
of RM-Nodes. We consider the RM-Node size, 500,1000,1500,
and 2000. The result is shown in figure 9.

From figure 9, we see that adding more number of RM-
Nodes increases the number of delivered contents. On the other
hand, the average cost of offloading the contents also increases
with increasing size of RM-Nodes. However, the number of
RM-Nodes has no effect on the content transfer time. Since
we just form a single level of ad hoc cloud, therefore, the
progression to meet a cloudlet for any RM-Node is very slow.
Moreover, for simplicity in our simulation, instead of using
the CMTP algorithm for RM-Node selection during content
distribution, we just followed the greedy based approach for
selecting the RM-Nodes. Hence, the content delivery time does
not change with RM-Node size and is larger than expected.

In our second experiment, we assume that we have 1000
number of RM-Nodes and an RM-Node can fail at any time
while carrying a content. If any node fails, it will lose all
the contents that it carries. The probability that an RM-Node
will fail depends on its PP. If the probability of failure is 0.5
then the likelihood that an RM-Node would fail to deliver its
contents given that its PP value is p is, 0.5%(1-p). We measure
the total number of successfully delivered contents and the
total number of lost contents considering the above-mentioned
failure model. Next, we increase the level of redundancy during
content delivery to 2, 3, and 4 times and measure the total
successfully delivered contents and total lost contents. The
corresponding graph is shown in figure 10.

Figure 10 shows that we can deliver a higher number of
contents if we consider smaller redundancy during content
distribution. However, the ratio of total lost contents compared
to the total distributed contents also increases when we consider
less redundancy. The reason is that for large redundancy, the
client needs to find a sufficient number of RM-Nodes before
sending the contents to each of them. Since our RM-Node size
is fixed, therefore, the client does not get enough number of
nodes for content offloading. On the other hand, since a larger
number of RM-Nodes receive the content, it can still reach to
the cloudlet when one or more RM-Nodes fail. Moreover, the
average cost for offloading each unit of content becomes higher
with higher redundancy as client pays money to more number
of RM-Nodes than before for the additional replication.

IX. CONCLUSION

In this paper, we presented a novel centralized-control ad hoc
cloud system that provides storage service in a delay tolerant
network. We proposed an efficient RM-Node selection strategy
based on the RM-Node’s contextual information and existing
knowledge of some parts of the world map. We introduced a
reduced version of CoAP and designed a message format
for the SASCloud to make it secure and energy efficient
during content distribution. We addressed all the possible
threats in our proposed model with the countermeasures. Our
experimental result based on a simulated environment of
the SASCloud showed that building such model is feasible.
However, our simulation is based on the prototype of the

.. 1000
=
S 2700
&g
g 900
“
(:O) o, 2680
3 800 g
3 =
= L=
5 700 2 2660
[=) <
=
S 600
§ 2640
500
2620

500 1000

1000 1500
RM-Node Size

(a) Total Delivered Content

2000

RM-Node Size

(b) Average Delivery Time

Fig. 9: Performance of SASCloud with different node size

——Delivery Ratio
——Failure Ratio

Delivery & Failure Ratio

os 1o 1ls 2o 25

Redundancy

alo als a5

(a) delivery and failure ratio

250
= 225
D
&
=
wn
3B 200
(&)
2 175
<c
150
125
1500 2000) 500 1000 1500 2000
RM-Node Size
(c) Average offloading cost
250
‘GE‘) 225
k=2
b=
3
S
= 200
=
175
150
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Redundancy

(b) Average offloading cost

Fig. 10: Performance of SASCloud with different redundancy value

SASCloud. Therefore, RM-Node size has rarely any effect
on content delivery time. The time would be much smaller
if we would consider multiple levels of ad hoc cloud. Also,
for simplicity, we did not implement our proposed CMTP
algorithm in the simulation. CMTP will reduce a significant
amount of content delivery time along with subsiding the
content failure to total distributed content ratio. As a future
work, we are planning to develop a protocol for efficiently
retrieving the contextual information of RM-Node and efficient
representation of the collected map information so that the
contextual information can be easily linked to the map during
the deployment of CMTP algorithm.

X. ACKNOWLEDGEMENTS
This research was supported by the National Science
Foundation CAREER Award CNS-1351038.

REFERENCES

H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mobile cloud computing:
architecture, applications, and approaches,” Wireless Communications and Mobile
Computing, vol. 13, no. 18, 2013.

F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role in the
internet of things,” in MCC Workshop, 2012.

G. McGilvary, A. Barker, and M. Atkinson, “Ad hoc cloud computing,” CoRR,
2015.

X. Fan, J. CaoFan, J. Cao, and H. Mao, “A survey of mobile cloud comput-
ing,” http://wwwen.zte.com.cn/endata/magazine/ztecommunications/2011Year/no1/
articles/201103/t20110318_224532.html, 2011, zTE Communications.

“Boincoid - an android port of the boinc platform,” http://boincoid.sourceforge.net/.
B. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud: Elastic execution
between mobile device and cloud,” in Computer Systems, 2011.

S. Al Noor, R. Hasan, and M. Haque, “Cellcloud: A novel cost effective formation
of mobile cloud based on bidding incentives,” in IEEE Cloud, 2014.

H. Ba, W. Heinzelman, C.-A. Janssen, and J. Shi, “Mobile computing - a green
computing resource,” in WCNC, April 2013.

N. Fernando, S. W. Loke, and W. Rahayu, “Dynamic mobile cloud computing: Ad
hoc and opportunistic job sharing,” in UCC, Dec 2011.

G. Fortino, D. Parisi, V. Pirrone, and G. Fatta, “Bodycloud: A saas approach for
community body sensor networks,” Future Generation Computer Systems, vol. 35,
2014.

C. Doukas and I. Maglogiannis, “Bringing iot and cloud computing towards
pervasive healthcare,” in IMIS, 2012.

S. Chatterjee and S. Misra, “Target tracking using sensor-cloud: Sensor-target
mapping in presence of overlapping coverage,” IEEE Communications Letters,
2014.

N. Zingirian and C. Valenti, “Sensor clouds for intelligent truck monitoring,” in
IEEE Intelligent Vehicles Symposium (1V), 2012.

[1]

[2]
3]
[4]
[5]
(6]
(7]
(8]
[91

[10]

[11]

[12]

[13]

[14]
[15]
[16]

[17]

[18]

[19]

[20]

[21]
[22]

[23]
[24]

[25]

[26]

[27]
[28]
[29]
[30]
[31]
[32]

[33]

M. Arrington, “Gmail disaster: Reports of mass email deletions,” http://techcrunch.
com/2006/12/28/gmail- disaster-reports-of-mass-email- deletions/.

M. Krigsman, “Apple’s mobileme experiences post-launch pain,” http://www.zdnet.
com/article/apples-mobileme-experiences- post-launch-pain/.

M. Shiels, “Phone sales hit by sidekick loss,” http://news.bbc.co.uk/2/hi/technology/
8303952.stm.

S. Sultan, M. Doori, A. Al-Bayatti, and H. Zedan, “A comprehensive survey on
vehicular ad hoc network,” Journal of Network and Computer Applications, vol. 37,
2014.

M. Prasad, J. Gyani, and P. Murti, “Mobile cloud computing: Implications and
challenges,” Journal of Information Engineering and Applications, vol. 2, no. 7,
2012.

S. Dashti, J. Reilly, J. D. Bray, A. Bayen, S. Glaser, M. R. Ervasti, and N. Davies,
“Using personal devices to deliver rapid semi-qualitative earthquake shaking
information,” GeoEngineering Report, 2011.

A. Mednis, G. Strazdins, R. Zviedris, G. Kanonirs, and L. Selavo, “Real time
pothole detection using android smartphones with accelerometers,” in DCOSS,
2011.

P. Angin, Bharat, and K. Bhargava, “Real-time mobile-cloud computing for context-
aware blind navigation,” IJNGC, vol. 2, no. 2, 2011.

D. Hoang and L. Chen, “Mobile cloud for assistive healthcare (mocash),” in APSCC,
2010.

“Amazon mechanical turk,” https://www.mturk.com/.

H. Lieberman and et al., “Common consensus: a web-based game for collecting
commonsense goals,” in IUI, 2007.

P. G. Ipeirotis, F. Provost, and J. Wang, “Quality management on amazon mechan-
ical turk,” in HCOMP, 2010.

R. Gao, M. Zhao, T. Ye, F. Ye, G. Luo, Y. Wang, K. Bian, T. Wang, and X. Li,
“Multi-story indoor floor plan reconstruction via mobile crowdsensing,” TMC,
vol. 15, no. 6, 2016.

R. Hasan, M. M. Hossain, and R. Khan, “Aura: An iot based cloud infrastructure
for localized mobile computation outsourcing,” in IEEE Cloud, 2015.

C. Funai, C. Tapparello, H. Ba, B. Karaoglu, and W. Heinzelman, “Extending
volunteer computing through mobile ad hoc networking,” in GLOBECOM, 2014.

E. Miluzzo, R. Céceres, and Y.-F. Chen, “Vision: Mclouds - computing on clouds
of mobile devices,” in MCS, 2012.

S. A. Noor and R. Hasan, “D-cloc: A delay tolerant cloud formation using context-
aware mobile crowdsourcing,” in CloudCom, 2015.

J. Beck, “How to calculate icc rankings,” http://www.ehow.com/how_6916968_
calculate-icc-rankings.html.

Z. Shelby, K. Sensinode, C. Hartke, and Bormann, “The constrained application
protocol (coap),” https://tools.ietf.org/html/draft-ietf-core-coap-18, 2013.

T. Kothmayr, C. Schmitt, W. Hu, M. Brunig, and G. Carle, “Dtls based security
and two-way authentication for the internet of things,” Ad Hoc Networks, vol. 11,
no. 8, 2013.

M. Luk, G. Mezzour, A. Perrig, and V. Gligor, “Minisec: A secure sensor network
communication architecture,” in IPSN, 2007.

C. Liu, C. Yang, X. Zhang, and J. Chen, “External integrity verification for
outsourced big data in cloud and iot: A big picture,” Future Generation Computer
Systems, vol. 49, 2015.

“The opportunistic network environment simulator,” http://www.netlab.tkk.fi/
tutkimus/dtn/theone/.

