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Abstract 
In recent years, cloud computing has become one of the most dominant computing paradigms. Researchers have 
explored the possibility of building clouds out of loosely associated mobile computing devices. However, most such 
efforts failed due to the lack of a proper incentive model for the mobile device owners. In this paper, we propose 
CellCloud — a practical mobile cloud architecture, which can be easily deployed on existing cellular phone network 
infrastructures. CellCloud is based on a novel reputation-based economic incentive model in order to compensate the 
mobile device owners for the use of their phones as cloud computing nodes. CellCloud offers a practical model for 
performing cloud operations, with lower costs compared to a traditional cloud. We provide an elaborate analysis of 
the model with security and economic incentives as the major focus. Along with presenting a cost equation model, we 
perform extensive simulations to evaluate the performance and also analyze the feasibility of our proposed model. 
Our simulation results show that CellCloud creates a win-win scenario for all three stakeholders (client, cloud 
provider, and mobile device owners) to ensure the formation of a successful mobile cloud architecture. 
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1. INTRODUCTION 

Cloud computing is a well-known computing model 

thanks to its competitive price, performance, and 

expandability. However, there is a tradeoff associated 

with cloud computing — hidden costs make it infeasible 

compared to private hosting [1], [2]. From the operational 

and structural point of view, the fixed structure of cloud 

data centers can cause underutilization of resources if 

there is a rapid decrease in clients’ demands for cloud 

services. Recently, chief providers of cloud service like 

Amazon and Microsoft did not succeed in earning the 

revenues they initially expected to get, because of the 

unforeseen shutdown of the government budget [3]. One 

of the main reasons for this deficit in the expected 

revenue is due to the inflexibility of these organizations to 

contract and expand the resources based on the client 

requirements. We argue that, a cloud service can be 

designed that is not subject to underutilization of 

resources, if the servers themselves could be outsourced 

from the cloud service providers to individuals with 

excess resources. In this model, using mobile devices, it is 

possible to form a highly scalable ad hoc mobile cloud 

with low infrastructure set up cost and time. 

Using mobile devices, it is possible to create a highly 

scalable, ad hoc mobile cloud with an easy to avail 

infrastructure, low budget, and short time frame. For this 

reason, mobile cloud computing is introduced where 

unlike a traditional cloud, a virtualized interface is formed 

using mobile devices. 

Researchers have defined mobile cloud from two 

aspects. According to the first aspect, mobile cloud 

computing is an infrastructure where mobile users use 

backend cloud system for storing and processing data 

required to run an application [4]. The second aspect 

contends that, mobile cloud computing enhances the 

storage and computational power of the cloud system by 

using the unused resources of mobile devices [5]. In this 

paper, we would like to shed light on the second aspect of 

mobile cloud. A few applications utilize mobile sensed 

data, which is both lengthy and costly in sending to the 

traditional cloud for processing. A better approach would 

be to process data on a local basis using the mobile cloud 

as explained in the second aspect. Another benefit of the 

second aspect of mobile cloud is the accessibility of 

millions of unused mobile devices. The survey of Lockout 

Inc. data show that around 20, 16, and 19 percent of the 

people have respectively one, two, and more than two 

unused mobile devices [6]. We argue that the computing 

capability of such devices can and should be utilized. 

There are many benefits of choosing a mobile cloud 

over traditional cloud. The first benefit is that a mobile 

cloud requires low set up and maintenance costs 

compared to traditional cloud. The second benefit is that a 

mobile cloud can be expanded to suitably keep pace of the 

growing demands of a client. A third benefit is that tasks 

can be effortlessly distributed and transferred among 

mobile devices as needed since the infrastructure of 

mobile network is already available in most places. 

Finally, according to Alzain et al. [7], Bendahmane et al. 

[8], and Lagar et al. [9], one can summarize that 
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maintaining higher redundancy in task computation 

guarantees more accurate results. For this reason, there is 

a higher possibility of obtaining legitimate results in a 

mobile cloud than a traditional cloud since there are more 

unutilized mobile devices that can be used for the 

repetitive computation of a single task. 

Most of the research performed up to now focus on 

the first aspect of mobile clouds which utilizes the cloud 

in the backend to enhance the storage and computational 

power, battery longevity, safety, and security of mobile 

device [10], [11], [12], [13]. Most researchers have not 

foreseen a more innovative approach where the use of 

mobile devices plays an integrated part of a cloud [14], 

[15]. Low storage and computing power of the unused 

mobile devices were the biggest stumbling blocks for 

researchers to exploit the opportunity of forming mobile 

clouds with these devices. However, with the advance of 

technology, researchers have just started considering the 

second aspect of mobile clouds where mobile devices are 

used as integral part of a cloud [14], [15]. Though these 

models [14], [15] include architecture for forming a 

mobile cloud, the absence of appropriate cost/incentive 

model fails to motivate the mobile device owners to 

participate. These models also do not address the 

feasibility of utilizing these unused mobile devices from 

the provider’s perspective. To solve this, we introduce 

CellCloud – a practical mobile cloud architecture, which 

can be easily deployed on existing cellular phone network 

infrastructures. In CellCloud, we address these issues by 

exploring a bidding strategy for providing incentives to 

mobile device owners, and also quantify the benefits 

achieved by cloud providers by using mobile devices as 

cloud nodes. 

In CellCloud, mobile devices known as bidders are 

hired following a bidding process. During the bidding 

process, each bidder is offered monetary incentive based 

on their available resource and rating point. The rating 

point determines the trustworthiness of the bidder for a 

particular task. Based on client requirement, CellCloud 

provider hires the required number of bidders for a task, 

divides the task into smaller subtasks, and distributes 

them among bidders for computation. The CellCloud 

provider uses a MapReduce based scheme for its 

computations. The overall model proves to be cost 

effective for both cloud providers and mobile owners 

creating a win-win situation for all the stakeholders. 

Initial results from CellCloud were presented in [16]. In 

this paper, we provide a comprehensive discussion of our 

expanded model, and present extensive and new 

simulation results from additional benchmarks of various 

aspects of CellCloud’s performance in order to 

demonstrate the feasibility of this model. 

 

Contributions: 

1) To the best of our knowledge, CellCloud is the very 

first attempt to form a mobile cloud using the network of 

the mobile operators and unused mobile phones. We 

introduce a bidding process for forming the mobile cloud 

where mobile device owners can submit their free 

resources during bidding and get incentives for their 

resources. 

2) We introduce the novel concept of rating points 

associated with the bidders (mobile devices) to ensure 

trustworthiness and reliability of the service in hand. 

Moreover, our model enables users to choose different 

service costs based on the rating level of the computing 

nodes, thus providing a unique opportunity to the clients. 

3) We provide simulation results on an LTE network 

topology using the NS-3 simulator to demonstrate the 

feasibility of the CellCloud model. 

 

The rest of the paper is organized as follows. Section 

2 describes the motivation of our research work. In 

section 3, we discuss some of the related works on mobile 

cloud. Section 4 introduces our mobile cloud architecture. 

We describe the strategies for assigning rating points, 

measuring the cost of the operation, and selecting base 

stations and bidders in section 5, 6, 7, and 8 respectively. 

Section 9 elaborates possible challenges in mobile cloud. 

We define some policy for the client and the bidder in 

section 10 followed by experimental results in section 11. 

Some possible applications of CellCloud are mentioned in 

section 12. Finally, we conclude with discussion and 

future directions in sections 13 and 14 respectively. 

 

2. MOTIVATION 
Mobile cloud computing requires a significantly 

smaller amount of initial set up cost as compared to a 

traditional cloud system. The primary reason of this low 

set up cost is that, it utilizes the unused mobile devices to 

create a cloud platform. A study by Lockout found that, 

approximately 52%mobile users intend to donate their old 

sets for charitable use [6]. Moreover, it is also observed 

that, mobile devices are in idle state for 89% of the time 

in a day and during that time the devices use less than 

11% of total CPU power [17]. Therefore, with no obvious 

harms and associated economic benefit, we believe that it 

would be very easy to motivate the mobile device owners 

to share their unused mobile devices on a cloud platform. 

Scalability of the client tasks is another big reason to 

choose mobile cloud than traditional cloud systems. 

Sometimes, there can be more demand for resources than 

expected. In general, a good amount of resources remain 

unused in a public cloud, as the providers want to be on 

the safe side. Therefore, if at any time there is a certain 

decrease in client demand, some resources will be unused. 

Recently, Amazon, Microsoft, and some other cloud 

services failed to earn expected revenues due to the 

unexpected shutdown of government budget due to the 

stalemate in the US legislature [3]. On the other hand, in 

our CellCloud architecture, we always hire bidders on an 
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on-demand basis. Since the infrastructure of the mobile 

phone network is already deployed and available, the cost 

for keeping continuous connection between the bidders 

and the base stations is almost negligible. We can always 

have a good number of reserve bidders. Therefore, our 

CellCloud architecture will be able to handle both the 

sudden increase and decrease of clients without any 

financial downfall. 

A mobile cloud can reduce the computational cost 

significantly as compared to the traditional backend cloud 

system. Mahesri and Vardhan showed that the average 

power consumption of a personal computer with a 1.3 

GHz processor in idle state is 13.13W [18] whereas, that 

of a mobile phone with a 400 MHz processor is only 

268.8mW [19]. Hence, the total power consumption in a 

mobile cloud is much less than a traditional cloud. 

Therefore, we can include more bidders in our CellCloud 

to achieve the same computing capabilities as provided by 

a traditional cloud. This comparatively higher power 

consumption issue also plays a big role in higher 

operational cost for traditional cloud services. 

Ensuring trustworthiness during computation is 

another major reason to choose a mobile cloud over the 

traditional clouds. Bendahmane et al. discussed two 

popular methods for ensuring the authenticity in cloud 

computation: majority based voting and m-first voting 

system [8]. However, both of these methods use multiple 

virtual devices for computing a single task. We use a 

similar approach in our CellCloud for enhancing 

trustworthiness. Since the level of trust is associated with 

the level of redundancy in task computation, availability 

of larger number of free bidders will help us in getting 

more precise results. In CellCloud, we always have a 

large number of unused bidders, which can be used for 

redundant computation. 

 

3. RELATED WORK 

Mobile computing is used for developing several 

applications in the field of distributed computing. Beberg 

et al. proposed Folding@home, a distributed computing 

methodology, for reproducing biophysical methods [20]. 

As indicated by their building design, volunteer users 

with an interest to participate in the computation allow 

their personal computers to be used. The server sends the 

users the data about a specific work unit, which is the 

mixture of some input files needed for completing a job 

inside a certain time period. A header is connected within 

a work unit to set the core type while the version inside a 

work unit is used to download and process the core. A 

core can be conceived as an executable file, which 

contains input files and generates output. The output 

created by the designated computational core is sent to the 

server. Since cores are autonomous from customer in this 

manner, this methodology can do any kind of processing 

and the overhaul of centers does not require reinstallation 

of any software. The significant downside of this 

methodology is that once a task is given, client has to 

follow and download the essential core type manually. 

Therefore, it is unlikely that they would like the 

complexity associated with the operation. In contrary, in 

our CellCloud architecture, the inputs are provided along 

with the requirements during the time a bidder 

participates on bidding. Based on the instruction provided 

by cloud, the bidder will just perform computation. 

Condor is a very famous project that is initiated by the 

researchers of the University of Wisconsin Madison [21]. 

It manages, circulates, and maintains a wide scope of 

computing systems. The project has the flexibility to 

match any input request for resource, assigning 

checkpoint along with migration facility. Moreover, it 

allows remote system calls to run jobs remotely. The jobs 

with higher priority are executed first without any 

interruption. The lower priority jobs are executed while 

the CPU is in idle and transferred to another one as soon 

as the CPU becomes busy. The user job is taken by the 

agent associated with the Condor kernel, while the 

resources are monitored by the matchmaker. As soon as a 

match is found, the job is transferred to that specific 

resource. One major problem of Condor project is that 

when a higher priority job comes and the system does not 

have enough resource, the lower priority jobs are 

interrupted. Hence, estimating the task completion time is 

very difficult for the client. On the contrary, jobs are 

independent of each other in our CellCloud architecture. 

Resources are allocated for a client as soon as a job is 

accepted. If there is not enough resource for satisfying the 

client requirements, then CellCloud will not accept the 

task. Therefore, it is easier for client to anticipate the time 

and cost of task completion in CellCloud. 

Miluzzo et al. proposed the concept of mClouds where 

group of mobile devices, known as mDevs, are brought 

together to form a cloud computing platform [15]. 

Whenever a mobile device wishes to compute a task, 

which requires larger resources than it currently has, the 

device broadcasts a solicitation message to inform the 

other mobile devices to join its mCloud formation. The 

mobile device divides and distributes the task among the 

mCloud devices. If the task is too large to finish even 

after forming the mCloud, then the device uses the 

backend cloud system for the remaining subtasks, as no 

mDevs are available. In mCloud system, mobile users 

have to decide when to form the mCloud and whether 

joining on mCloud will be beneficial or not. The primary 

problem in mCloud system is to ensure security since 

anyone having a mobile device can join without 

verification. Therefore, the presence of a rogue device can 

lead to wrong output. On the other hand, all the devices 

used in our CellCloud are verified by the operator 

providing cloud service before they are included on cloud. 

Therefore, we can ensure more accurate and trustworthy 

results in CellCloud than the mCloud system. 
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Researchers from the Space Science Laboratory of 

University of California created the SETI@home project 

to explore the presence of life in the universe [22]. In their 

project, they consolidate immense computing power 

distributed all around the world to examine radio 

telescope signals come from space. A large number of 

data are broken into smaller chunks and distributed 

among a large number of computers for processing. 

Result obtained from each computer is organized by 

central repository. Compared to the typical distributed 

systems, SETI@home uses more variety of resources 

distributed among diverse locations. However, the major 

problem in SETI@home project is that the tasks are 

distributed only if the resources are in idle state. 

Therefore, it rarely provides any real time solution for a 

task. Some tasks might need to be finished within a 

specific deadline. On the other hand, in our CellCloud 

architecture, client can inform the deadline for their task 

and CellCloud selects the resources based on the client 

requirements. 

Dashti et al. introduces an approach to use smartphone 

sensors for effectively and efficiently detecting the effect 

of an earthquake [23]. In their approach, smart phones are 

placed into an artificially shaking table. The shaking table 

can move in every direction and can horizontally 

accelerate up to 1.5 g even to a 100,000 lb object. The 

time needed for the smartphones to send their data, along 

with the position and orientation, is determined and used 

during prediction. A shaking meter continuously detects 

shakes and only starts recording while the meter drops 

below a threshold. The emergency responders can 

summarize the result sent by those sensors and take the 

necessary steps based on the summary after an 

earthquake. Their approach does not produce sparse result 

unlike the result produced by the existing methods. Direct 

human observation during the earthquake might help in 

detecting the actual situation of earthquake but it is highly 

related to how fast the user responses. Moreover, 

untrained users might provide misleading information. 

Therefore, using smartphone sensors for observing real 

time earthquake data as proposed in their research work 

will be both inexpensive and efficient as they are now 

easily available and the sensors perform quite well in 

sensing the environment. 

Mednis et al. discuss the uses of mobile sensors to 

detect the real time irregularity on roads [24]. Based on 

several parameters such as, average load on road, 

vibration on road, the possibility of a road being damaged 

at a specific time is determined. The usage of ground 

penetration radar or commercial products for surface 

analysis is economically infeasible. On the other hand, 

collecting photos to determine damage and hazard on the 

road requires complex image analysis along with human 

interaction. Therefore, mobile sensors can be both 

automated and economical solution for determining the 

road hazards. Four different approaches are used for 

detecting pothole on the road. The first approach Z- 

THRESH compares the accelerometer reading values with 

a threshold value and any value exceeding the threshold 

indicates the possibilities of pothole. In second method, 

the difference between two values above a threshold is 

used to determine the pothole. The third method first 

determines the standard deviation of the acceleration on 

vertical X-axis, which is compared with the threshold to 

detect pothole. The fourth method considers threshold 

values in the entire three axes for measuring pothole. One 

problem on their proposed work is, there can be several 

values above a threshold. But it is unclear which two 

values will be taken from those values. Similarly the 

authors never defined clearly the term sliding window. So 

its hard to imagine the effect of the size of sliding window 

on determining true positives and true hit. From their 

experimental result it is also seen that the performance of 

all the methods other than Z-DIFF is not convincing for 

detecting drain pits. 

Angin et al. proposed a Context-aware blind 

navigation system, which uses the resources of cloud for 

complex computations [25]. In their method, a cameral is 

attached with the sunglass, which captures the visual 

records and sends it to the mobile device via Bluetooth. 

The mobile device senses the voices and its integrated 

camera determines the position. The mobile device 

processes the data for identifying the context. The 

positioning and direction is precisely determined by using 

the combination of GPS, Wi-Fi access point, and cell 

tower triangulation along with a compass. The authors 

used android as a mobile platform and Amazon EC2 as a 

cloud platform. For detecting the 3D real-time images, 

they choose time-of-flight range cameras. Their proposed 

method, in addition to reaching the destination properly, 

also supports blind people to effectively track their 

personal belongings along with the identifying people 

surrounded by them. In addition, it provides several 

advantages as compared to the normal stereo cameras 

such as, better detection of actual dense, simpler and 

efficient processing etc. Moreover it can guide during 

outdoor navigation such as how to cross an intersection in 

urbane area, detecting an obstacle, locating a bus stop 

along with the pedestrian signal. 

Hoang et al. proposed a mobile cloud architecture that 

composed of sensor and mobile agent component which 

are responsibility to collect and manage data from the 

environment [26]. They included several features to 

maximize the utilization ratio. For example their 

asynchronous message mode (AMM) activates a mobile 

application, which sends a request to cloud server and 

wait until a response comes from the server. For 

implementing AMM they uses a push mechanism, which 

helps to run application in the background so that the 

energy can be saved. A database is embedded with their 

system, which relocates the relevant data when the 

connection is lost. The context aware mobile and 
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middleware section of their proposed architecture used 

the contextual information such as quality of session, 

condition of network, temperature, humidity location, etc. 

during processing the information. They use an intelligent 

learning model for creating and updating their context 

repositories. This contextual form of data can be used to 

reduce the energy consumption of a specified application. 

A middleware layer is placed between data acquisition 

layer and back end cloud layer to handle the power of the 

context aware data along with the activation of emergency 

if required and dynamic allocation of the back end cloud 

resources. However, It is not clear from their work that 

how does they handle the power or network failure. No 

algorithm is mentioned for handling such unwanted 

situations. 

All the aforementioned approaches have some 

common problems such as, the motivation to participate 

in cloud architecture on part of the device owners is 

overlooked, the requirements of client for a task is not 

mentioned, and no cost benefit analysis is provided for 

client to take decision on joining cloud system. On the 

contrary, in CellCloud, the cloud service provider hires 

bidders by providing incentives. As a result, we can 

expect to get a large number of bidders for tasks. Clients 

can also submit their requirements for a task and the 

CellCloud provider provides the estimated cost of that 

task. Therefore, clients can analyze their benefits before 

giving any task to CellCloud. 

Moreover, CellCloud provides a pricing chart for the 

client from where they can get the idea of the possible 

time and cost for their task completion. Clients can easily 

verify whether assigning a task to our mobile cloud will 

be beneficial for them or not. 

 

4. CELLCLOUD ARCHITECTURE 
The CellCloud architecture consists of a cloud central 

system (CCS), which is the central part of the operator 

cloud system. During the cloud set up, CCS sends a 

message to all of its base stations to inform the mobile 

users under their coverage area to initiate bidding. CCS 

determines the price for hiring a bidder based on the 

rating point of the bidder. The interested bidders submit 

the information regarding their available resources to the 

corresponding base stations. Each base station maintains a 

table consisting of the bidder id, rating point, and 

available resources. The high level architecture of 

CellCloud is shown in figure 1. However, the following 

two scenarios can be possible while a bidder wants to 

participate in a task: 

Scenario 1: If the bidder is not registered and sends a 

request to the corresponding base station for the first time, 

the base station adds a new entry into its bidder 

information table. The base station requests CCS to assign 

an id for the new bidder. The id is stored into the id field 

of the table. A default initial rating point of 0.5 is 

assigned for the bidder. The bidder receives its id from 

the base station and stores it along with the id of the 

current base station. 

Scenario 2: If an existing bidder requests to the 

corresponding base station for the participation of a task, 

it needs to send its id along with the id of last base station 

it visited for a task computation. The base station collects 

the information of that bidder from that last visited base 

station. The current base station updates its bidder table 

while the previous base station deletes the entry 

associated with that bidder. 

 
 

Figure 1. CellCloud Architecture 

 

Clients are individual users who want to take cloud 

facility for their tasks. Clients specify their requirements 

for the task. The requirements include the task completion 

time along with the assurance that the task will be 

finished within the deadline. We refer this level of 

assurance as the reliability. Bidders with higher rating 

point ensure higher probability to finish the task within 

the given deadline. Before accepting any task, CCS 

verifies whether the CellCloud has sufficient resources to 

complete that task while maintaining the desired level of 

reliability. CCS contacts the base stations to submit the 

total free resources they can provide keeping the desired 

level of average rating point. Based on the information, 

CCS selects some base stations for that task. We refer 

each group of base stations for a specific task as an 

operational unit. Depending upon the free resources at 

each base station under the operational unit, CCS divides 

the task into several un-uniform subtasks. The base 

station with higher amount of free resources receives a 

larger subtask compared to a base station with lower 
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amount of available resources. The operational unit 

divides the subtask again into several un-uniform subtasks 

and distributes among the bidders based on their 

resources. The process of mapping a task inside an 

operational unit is depicted in figure 2. 

Each bidder sends its result to the reducer after 

computation. Each reducer continuously collects results 

from the bidders and performs reducing operation on 

them. Once the reducer computes the final result after 

reducing all the results obtained from the bidders, it sends 

the result to CCS. CCS collects the reduced result from 

each base station inside an operational unit and starts 

reducing the result. The final result is sent to the client. 

The process of reducing the result is shown in figure 3. 

 

 
 

Figure 2. Process of Mapping a Task Inside Operational 

Unit 

 

 

 
 

Figure 3. Process of Reducing Result Inside Operational 

Unit 

Once a subtask is finished, base station measures the 

performance of each bidder under its coverage area. 

Based on the performance, the base station re-evaluates 

and updates the rating point for each bidder. 

 

5. RATING POINT CALCULATION 
The rating point denotes the level of trust the cloud 

provider has on a bidder of the cloud system. The rating 

point of each bidder ranges from 0 to 1. A bidder with a 

higher rating point is considered to be more trustable 

compared to a lower rating point bidder. Initially each 

bidder is assigned a rating point of 0.5. Upon the 

successful completion of a task, we provide a reward that 

will increase bidder’s rating point. On the other hand, we 

will penalize if the bidder fails to finish the task within 

deadline. However, the rate of penalize will be more as 

compared to the rate of reward. Before sending a task to a 

bidder, base station will estimate the possible task 

completion time t0 based on its resources. In addition, 

base station will define two more time. The max time tu 

and the min time tl which are 10 percent larger and 

smaller respectively than the original estimated time. We 

assign a reward of 1, 0.7 and 0.5 for completing the task 

within the time tu, to and tl respectively. On the other 

hand, a bidder will not be given any reward if it does not 

finish the task before tl. The new rating point will be the 

average of the current rating point and the reward point. 

In other word, we always emphasize the most recent task 

during the calculation of the new rating point. Thus, if the 

current rating point of the users is Pc and the reward for 

the most recent task is Pr, then the new rating point will 

be, 

Pn = 
𝑃𝑐+𝑃𝑟

2
 

 

6. MEASUREMENT OF COST AND TIME 
For calculating the cost, we consider the cost 

associated with hiring the bidders and the cost associated 

with using network devices. The hiring time of a bidder is 

the addition of the time taken by the bidder to receive the 

task; the time bidder is used for task computation, and the 

time taken by the bidder to send the result. However, the 

consumed power in each mobile device during sending 

and receiving time is proportional to the rate at which the 

mobile device transfers and receives data. Suppose the 

power drop for sending and receiving at a rate of 1 unit/s 

is Px and Py respectively. If the bidder sends and receives 

data at a rate of x unit/s and y unit/s then the power drop 

for sending and receiving is Pxx and Pyy respectively. If 

the bidder sends data for ts times and receives data for tr 

times, then power consumption for receiving a task and 

sending result will be, 

Psr=ts Pxx + tr Pyy 

Let us assume that the power drop during task 

computation is Pt in each unit of time. If the bidder takes tt 
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times for computing a task then the consumed power 

during computing a task will be,  

Ptask =ttPt 

Suppose the cost for consuming each unit of power is 

Cu thus the cost for total power consumption will be,  

Cp =Cu (Psr +Ptask ) 

Let us assume that bidder with rating point 0.1 

receives m% profit of total cost for power consumption. 

If the rating point of the bidder is Rb then the cost for 

hiring a bidder will be, 

Ch = (100+m) ∗ Cp ∗  Rb 

For calculating the cost associated with the use of 

network devices, we need to know the cost of mobile 

operator for transferring each unit of data within the 

network. Let us assume that the cost of mobile operator is 

Cdt for transferring each unit of data. Therefore, if the 

bidder receives p unit and sends q unit of data the cost of 

the operator will be Cdt(p+q). If we assume that the 

mobile operator makes r% profit on its total cost for 

sending and receiving data then the cost associated with 

network will be, 

Cn =Cdt(p+q)*(100+r)/100 

Hence, the cost for completing a t unit of task by a 

single bidder will be, 

Cb =Cn +Ch 

If n bidders B1 , B2 , ....Bn are hired for a task with the 

cost of C1, C2, ...Cn respectively then the total cost for task 

completion will be, 

C=C1+C2+ ...+Cn 

For each base station, we consider the following times 

during a task computation: 

• Time to divide the task among n segments (td) 

• Time to send the segments of a task to bidders (ts)  

• Maximum task completion time among all bidders 

(tmax ) 

• Time to receive the results by base station from the 

bidders (tr) 

• Time to reduce the results (trd)  

Suppose n number of bidders B1, B2, ...Bn participate 

on computation where each bidder takes xi size of task 

as input and produces yi size of result. If the data transfer 

rate between the bidder and the base station is BW then 

the time that will be taken by each base station for 

computing its assigned task will be,  

tbs=td+
∑ (𝑥𝑖
𝑛
𝑖=1 +𝑦𝑖)

𝐵𝑊
 +tmax+trd 

Suppose there are n base stations bs1, bs2, ..., bsn inside 

an operational unit and each take tbs1, tbs2, ...tbsn time to 

finish the task. If the CCS takes tdiv and tred time to 

distribute the task and reducing the result then the total 

time for a task computation will be, 

T = maxtime(tbsi) + tdiv + tred 

 

Here maxtime is the maximum task completion time 

among all the base stations. 

 

7. BASE STATION SELECTION STRATEGY 
In the Base Station bidding strategy, the reliability 

scales from 0 to 1. The client submits his required 

reliability R along with the deadline T. CCS broadcasts a 

message to all the base stations and ask for total free 

resources it can provide with an average rating point of R. 

Suppose p out of n base stations reply with the resource 

amount r1, r2, ...rp respectively. Based on the task size and 

the deadline, CCS estimates total resources required for 

finishing the tasks. CCS divides and distributes the task 

into several smaller subtasks in such a way that each of 

these p base stations receives equal load on their available 

resources. If M is the total resources required for finishing 

the task of size S and CCS selects r1
/, r2

/, , ... rp
/ resources 

from base stations b1, b2, ...bp respectively then, 

ri
/ = M* 

𝑟𝑖

∑ 𝑟𝑗
𝑝
𝑗=1

   

 

8. BIDDER SELECTION STRATEGY 
Suppose a base station receives a request for resource 

M/ from CCS with an average rating point of R. The base 

station uses the procedure as described in Algorithm 1, to 

select the bidders from its available bidder list. 

 

 

Algorithm 1 Bidder Selection 

1: set selectedbidders=null 

2: sort bidders into ascending order b1,b2,...bm based 

on the rating point p1 , p2 , ...pm 

3: find k such that pi >=P ∀i>=k and pi <P otherwise 

4: set upperpointer=k and lowerpointer=k-1 

5: push bupper pointer into selectedbidders 

6: set upperpointer=upperpointer+1 

7: find resourcesum which is the sum of the resources 

of selectedbidders 

8: if resourcesum≥M/ then 

9:  return selectedbidders 

10: else 

11:  if average rating point of selected bidders ≥ 

target rating point then 

12:   push blower pointer into selectedbidders 

13:   set lowerpointer=lowerpointer-1 

14:  else 

15:   push bupper pointer into selectedbidders 

16:   set upperpointer=upperpointer+1 

17:  end if 

18:  go to step 7 

19: end if 

 

 

Base station divides the bidders into two parts. Those 

bidders who have higher rating point than the target rating 

point R is placed into the upper part while the rest are 

placed into the lower part. Base station selects one bidder 

at a time either from upper or lower part depending upon 
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whether the average rating point of currently selected 

bidders are less than or greater than the target rating point. 

Base station repeats the process of selecting birders until 

the required amount of resources for the task is achieved. 

 

9. CHALLENGES IN BIDDING STRATEGY 
We listed several unwanted circumstances in our 

proposed model, which are described below. 

  

9.1 FINISHING TASK ON DEADLINE.  
One of the major challenges in our architecture is to 

ensure that, each task will be finished before its deadline. 

In our CellCloud architecture, CCS only accepts a task if 

the cloud has sufficient resources. Task completion may 

be delayed due to some unwanted circumstances such as, 

network failure or bidder negligence. However, the bidder 

knows that it will receive more incentives if it has higher 

rating point and only finishing the task on deadline could 

enhance its rating point. Therefore, the bidder will 

sincerely try to complete the task on time. 

 

9.2 INSUFFICIENT BATTERY POWER.  
For finishing the tasks on time, mobile devices need to 

remain switched on. Unexpected power failure can stop 

computational process or result in loss of computed data. 

Therefore, it is very important for CCS to know the 

current power status of the mobile device so that it can 

collect the result so far computed in case of possible 

power failure and distributes the remaining tasks to the 

backup bidders. We can use the agent SystemSens in each 

computational device to monitor battery power [27]. A 

threshold level Pth is defined and if the power goes below 

that threshold then the agent communicates with the CCS 

to inform possible power loss. Depending on the user’s 

requirement, the base station may consider some of the 

bidders as reversed bidders and may contact them when 

required. Base station forwards the incomplete tasks to 

one of those reserved bidders on the cloud system. Base 

station sends a confirmation to both the current bidder and 

the new bidder when the incomplete tasks are transferred 

to the new bidder. 

 

9.3 TRUSTED COMPUTING.  
Another major concern for the provider is to ensure 

that any malicious program inside a mobile device cannot 

manipulate computation or compromise data inside the 

mobile device. Using a trusted cloud computing platform 

(TCCP), we can prohibit malware to access input and 

output data, or stop interfering during computation [28]. 

To establish a TCCP, a trusted virtual machine monitor 

(TVMM) [29] is installed in a mobile device if the 

platform inside the mobile device satisfies the 

specification defined by the trusted computing group 

(TCG). TVMM prohibits even the privileged user from 

observing or altering the data during computation. A 

trusted coordinator (TC) inside TCCP certifies a platform 

if it finds the platform secure for computation. A bidder 

only accepts input data and performs computation if TC 

certifies it. 

 

10. POLICIES IN CELLCLOUD 
The list of policies in our mobile cloud architecture 

includes: 

 

10.1 TASK SELECTION POLICY.  
We expect a large number of requests from client at a 

certain period of time. The clients will be served on first 

come first serve basis. A client will be served only if the 

cloud has enough resources to fulfill clients’ 

requirements. Otherwise, clients will be informed 

regarding the limitation of resources. The client might 

change its requirements and request for cloud service 

again. If two client come at the same time then the client 

which can be served with relatively less time will be 

served first so that more number of clients get the 

opportunity to use CellCloud. 

 

10.2 WAITING TIME POLICY.  
It is expected that each bidder will finish its task 

before the timeline defined by base station. However, 

there are still possibilities that a bidder fails to finish the 

task before deadline. Also, Bidders may loose the 

connection with base stations and therefore, fail to submit 

the result. Bidders can also refuse to do the task. 

Regardless of whether any bidder is working or not, 

mobile cloud always needs to ensure the client that their 

task will be finished within the deadline. We use the 

following steps for handling such unwanted situations: 

Step-1: We include redundancy during task 

computation. The level of redundancy is proportional to 

the level of reliability client demands. 

Step-2: Base station only considers the bidders who 

send their result before the original estimated time to. 

Step-3: If no bidder sends its result before the original 

estimated time to, base station will still wait for receiving 

a result from a bidder until the min time tm reaches. 

Step-4: If all the redundant bidders fail to submit the 

result within the min time tm, base station finds alternate 

bidder and give the task to those bidders. 

 

10.3 PRICE AND DELAY POLICY.  
We assume that mobile cloud will make 100% profits 

on the cost of computation. If the cost associated with 

computing a task is C then the price for the client will be 

2C. In case of failure to finish the task within the deadline 

specified by the client, the mobile cloud will make 50% 

less profit than the profit made for successful completion 

of the clients’ requirements. 
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11. EVALUATION 
In this section, we present our implementation and 

evaluation results. 

11.1 EXPERIMENTAL SETUP.  
In our experiment, we used three types of mobile 

devices as our bidders. The first one was a Google nexus 

4 with quad-core Krait clocked at 1.5GHz processor along 

with 2GB of RAM, the second one was a Samsung 

Galaxy S Plus with a 1.4 GHz Scorpion processor and 

512 MB RAM. The third one was a Samsung Galaxy S4 

with 1.2 GHz quad-core processor and 2 GB RAM. These 

mobile devices have internal or external SD card where 

the task was stored before executing. Similarly, the result 

of the computation was also stored in the SD card before 

sending back to the corresponding base station. We 

solved all the benchmark problems for a input file of size 

1MB to 10MB with 1MB increment on these mobile 

devices and measured the time and power consumption. 

We calculated the average task completion time and 

power consumption on each of those mobile devices for a 

task of 1MB and considered that task as our base task. 

However, the sorting problem required much longer time 

on mobile devices due to their limited resources. 

Therefore, we solved the sorting problem for a input file 

of size 1KB to 10KB with 1KB increment and measured 

the time and power consumption for those tasks. We 

calculated the average task completion time and power 

consumption on each of those mobile devices for a task of 

1KB and considered that task as our base task. We repeat 

the whole steps for 10 times and measure the task 

completion time and the power consumption. From the 

sample run, we found that the task completion time on 

each type of mobile device is almost proportional to the 

task size for specific types of task. Hence, we simplified 

our model by comparing any task size with the base task 

size. For example, if the ratio between the current task 

size and base task size is Sr and the base task completion 

time is Tb, then the current task completion time is SrTb. 

The task completion time varies depending on the types 

of mobile devices. Therefore, instead of considering a 

fixed base task completion time, we considered a random 

time within a defined range as base task completion time 

for each bidder in our simulation. Similarly, we measured 

the average power drop in each second while solving the 

three-benchmark problems. 

As part of the evaluation, we considered three 

benchmark problems: word count, intervened index, and 

sorting an array. We first compared the performance of 

our CellCloud with the traditional cloud system. We also 

considered different failure rate of bidder and measured 

the performance of our CellCloud system. 

We built our CCS on a Desktop with 2.8 GHz CoreTM 

Quad CPU along with 7.7 GB RAM. The Android 

Standard Development Kit (SDK) on Java eclipse 

platform was used for implementation and performance 

analysis of CellCloud Central System. Android SDK is 

proprietary software from Google, which is installed on 

the open source platform Eclipse for performing 

computation on android system. In our experimental set 

up, we considered that CellCloud can have a maximum of 

100 base stations, where a maximum of 1000 bidders can 

participate under each base station. Each bidder can have 

any of the three types of mobile devices. The rating point 

of each bidder ranges between 0.1 to 1. Each bidder is 

assigned a failure value ranging from 0.1 to 1. Moreover, 

the bidders base task completion time is also initialized by 

generating a random number within a pre-defined range 

that we derived from the sample run on actual devices. 

For network setup, we assumed that the CellCloud is 

implemented on LTE network structure [30]. We used the 

NS-3 LTE module for simulating the distribution and 

transfer of the task to the bidders and receiving the result 

from them. We used the standard LTE format of 1460 

bytes packet size. In LTE, each of the 3 sectors of a base 

station can transfer data at a rate of 3.3 Gbit/s [31]. We 

considered a 60-meter cell size, where the UE nodes 

(bidders) are distributed and served by an end node (Base 

Station). We considered 1500 bytes maximum transfer 

unit (MTU) along with propagation delay or channel 

delay of 0.010 seconds. Interval between two consecutive 

packets was considered as 0.006 seconds. For simplicity, 

we assumed that the bidders are not moving. 

We also set up a private backend cloud system by 

creating micro-instances from Amazon EC2 cloud on pay 

as you go basis, which costs 1.3 cents/hour for storage 

and 1 cent/GB for data transfer. For our convenience, we 

referred both the rented bidders and computers as nodes. 

 

11.2 EXPERIMENTAL RESULTS.  
Task Completion Time and Cost. First, we selected a 

word count task of size 1 MB. Initially, we considered 

that the private cloud is made of only a single node and 

calculated the task completion time. In amazon pay as you 

go service, a PC has to be rented for at least an hour. 

Amazon charges 1.3 cents/hour for a micro instance. 

However, in our experiment, we considered two 

scenarios. In the first scenario, we calculated the cost 

based on the actual time a PC is rented. Therefore, if a PC 

is rented for 10 minutes, the cost will be 0.13 cents 

instead of 1.3 cents. In the second scenario, no matter 

how long a PC is rented, the cost will be calculated on 

hourly basis. Thus, the cost of hiring a PC for 90 minutes 

will be 2.6 cents. In each iteration, we added a PC until 

the task completion time reached the lowest value. 

Next, we ran the same task in our CellCloud and 

measured the task completion time. We used the power 

meter to determine the power drop on a node in every ms 

while computing a task. We found that the power drop is 

approximately 1000 mw. For each node, we calculated the 

total power drop based on the time that the node is used 
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for computation. From the experimental result of Huang 

et al. [32], we knew that in LTE technology, the power 

drop for receiving data at a rate of 1 Mbps is 1340.01 mw 

in every ms while sending data at the same rate has power 

drop of 1726.43 mw/ms. We calculated the power drop in 

every ms for this varying data rate. Based on the time a 

node is used for sending and receiving data, the total 

power drop in every node was measured. On an average, 

the cost of electricity in USA is 8.75-cent/KW hour. 

Considering the above facts, we measured the cost of 

hiring bidders for the whole task. From the survey of 

Brain et al., we found that in best case, the operators can 

make 200% profit on their total investment if they provide 

internet services with just 1.9 cents per gigabyte [33]. 

However, in the worst case, they need to provide Internet 

services with 8.3 cents per gigabyte to make 200% 

profits. Considering the amount of data sent and received 

during the mapping and reducing process, we measured 

the cost in both the best and worst condition. The 

resulting cost was computed by adding up this network 

cost with the bidder hiring cost. We repeated the whole 

process for 10 times and took the average. We repeated 

the whole process by increasing the file size by 1 

MB in each iteration until the file size is reached 20 

MB. Applying the similar procedure, we computed the 

task completion time for inverted index and sorting 

problem on both CellCloud and traditional cloud. The 

time for different task size for each of the three 

benchmarks is depicted on Figures 4, 5, and 6 

respectively. The corresponding cost for task completion 

is shown in Figures 7, 8, and 9 respectively. We used a 

logarithmic Y-axis of base 2 for our convenience. 

 

 
Figure 4. Relationship of Task Completion Time With 

Increased Task Size for CellCloud and Traditional Cloud 

for Word Count Problem 

 

 
Figure 5. Relationship of Task Completion Time With 

Increased Task Size for CellCloud and Traditional Cloud 

for Inverted Index Problem 

 

 
Figure 6. Relationship of Task Completion Time With 

Increased Task Size for CellCloud and Traditional Cloud 

for Sorting Problem 

 

From Figures 4, 5, and 6, we notice that the on an 

average, the task completion time in CellCloud for word 

count problem is 15 times more than traditional Cloud. 

For inverted index problem, CellCloud takes much higher 

around 30 times more than traditional cloud. The sorting 

problem takes approximately 20 times more in CellCloud 

than traditional cloud. Moreover, according to the first 

scenario of traditional cloud, Figure 7, 8, and 9 show that 

the cost is approximately half compared to even the best 

case scenario of CellCloud for word count and inverted 

index problem. For sorting problem, traditional cloud is 

10 times less expensive than the best case scenario of 

CellCloud.  
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Figure 7. Relationship of Cost with Increased Task Size 

for CellCloud and Traditional Cloud for Word Count 

Problem 

 

 
Figure 8. Relationship of Cost with Increased Task Size 

for CellCloud and Traditional Cloud for Inverted Index 

Problem 

 

On the other hand, Figure 7 and 8, and 9 depict that the 

cost for word count, inverted index, and sorting problem, 

according to the second scenario of traditional cloud, is 

approximately 270, 150, and 90 times more than the cost 

of CellCloud in the worst case. However, if we observe 

the pricing policy of the major cloud providers, then the 

second scenario is more practical. Therefore, our 

CellCloud system might not ensure lowest time but it is 

far less expensive than traditional cloud. Let us consider 

the ultimate gain as the ratio of gain in cost to gain in 

time. The ultimate gain with CellCloud is 5 times more 

compared to traditional cloud for both inverted index and 

sorting problem and that of word count problem is 

approximately 15 times. 

 
Figure 9. Relationship of Cost with Increased Task Size 

for CellCloud and Traditional Cloud for Sorting Problem 

 

Computations with Node Failures. In our next 

experiment, we assumed that the bidder can fail anytime 

during task execution. The probability of failure for each 

bidder can varies from 0% to 100%. During our 

simulation, we assigned a failure value for each node 

under a base station. We also fixed a threshold for failure 

and assumed that the nodes whose assigned failure value 

is below the threshold will fail to perform the task on 

time. Each base station has the information of possible 

task completion time for each bidder. If the base station 

does not receive result within that time it will find another 

bidder and send the task to that bidder. The bidder that 

fails will not receive money for the task. The variation of 

task completion time for different failure rate is depicted 

in Figures 10, 11, and 12. 

 

 
Figure 10. Relationship of Time with Increased Failure 

for 20 MB Word Count Task 
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Figure 12. Relationship of Time with Increased Failure 

for 20 MB Inverted Index Task 

 

 
Figure 12. Relationship of Time with Increased Failure 

for 20 MB Sorting Task 

 

From Figures 10, 11, and 12, we notice a very little 

increase in task completion time with increasing failure 

rate. For word count and inverted index problem, the rate 

of increment in task completion time is 1 and 2 percent 

respectively from failure value 0 to failure value 0.5. The 

increasing rate is small because we are distributing the 

task among a large number of bidders. Hence, each bidder 

receives a very small portion of the task. Therefore, 

failure of a bidder does not affect much on overall task 

completion time. However, for sorting problem, we 

identified approximately 200% increase in time from 

failure rate 0 to 0.5. Each node in sorting problem takes 

much larger time even for a very small portion of the task. 

Moreover, the input and output size is the same in sorting 

problem. Thus, the base station has to wait for much 

longer time before transmitting the task again to a 

different node. However, considering failure rate of 0.5, 

the increase in time is still much smaller as compared to 

the overall task completion time. 

 

 
Figure 13. Relationship of Cost with Increased Failure 

for 20 MB Word Count Task 

 

 
 

Figure 14. Relationship of Cost with Increased Failure 

for 20 MB Inverted Index Task 

 

 
Figure 15. Relationship of Cost with Increased Failure 

for 20 MB Sorting Task 
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On the other hand, if we consider Figures 13, 14, and 

15, we notice that the cost increases very slightly with 

increasing rate of failure. From failure rate 0 to 0.5, in 

best case, the cost increases approximately 18%, 10%, 

and 2% for word count, inverted index, and sorting 

problem respectively. The increase rate is approximately 

24%, 12%, and 7% for word count, inverted index, and 

sorting problem respectively. In our CellCloud 

architecture, the bidders will not receive any money if 

they fail to perform the task on time. Hence, when a 

bidder fails we just need to consider the network cost for 

sending the task to the bidder. 

 

12. FUTURE OF CELLCLOUD 
12.1 SPEECH RECOGNITION.  

In several scenarios we might need to recognize the 

speech [34]. For example if we move to a place where 

people speak different languages then we might feel 

difficulty to communicate with them. In such case we 

might want our mobile device to act as a translator. In 

addition, sometimes we meet a person after long time and 

forget the name of that person. Using speech recognizer, 

we can match the voice of the person with our previously 

recorded voice and identify that person. However, it 

requires a substantial computational power and a battery 

power for running the tool. Instead, our mobile device can 

record the voice and transmit the speech signal to the 

cloud. The cloud returns the recognition result after 

processing. 

 

12.2 IMAGE ANALYSIS.  
Image analysis might require when we want to know 

the details of a visible image. For example, often we visit 

a museum where we see different types of arts. We are 

always enthusiasm to gather information about those arts. 

We might not want to run a complex image analysis tool 

on our limited power mobile devices. The picture of those 

arts can be sent to the cloud for analyzing. The cloud 

sends the detail information of the art back to the user 

after the processing. 

 

12.3 REAL TIME INFORMATION GATHERING.  
People might be interested to gather information 

quickly about a specific area with minimal amount of 

cost. For example, we might want to go to a party and 

want to know the suitable dress for the party. Moreover, 

we might be also interested to know the number of people 

so far in that party. We can easily get that information 

using CellCloud. The CCS can ask the bidders on that 

party to collect and process the required information. 

 
 
 

12.4 FACE RECOGNITION.  
Face recognition is a widely used for applications such 

as surveillance, airport security, law enforcement, and 

border patrol [35]. First, an input image is taken for 

analysis by the face recognition algorithm. From the 

result of the analysis, we extract several information such 

as, size, shape, and position etc. of various facial features. 

These extracted features are compared with the images 

existed on an already existing facial database for a match. 

However, this complex face recognition algorithm is hard 

to run on a user limited mobile resource. The user can 

acquire the image and send it to the cloud for processing. 

 

13. DISCUSSION 
From our simulation result, we see that the task 

completion time in CellCloud is much higher than 

traditional cloud. This might lead to a question why will 

we use CellCloud? If clients want immediate result of a 

problem, then CellCloud will not be the right choice for 

them. However, sometimes clients want service where 

waiting time does not matter much. In fact, clients are 

more concern about the cost and complexity. In such 

cases, CellCloud could be a better option for them than 

traditional cloud. They are already connected to a mobile 

network and therefore, requesting for cloud service from 

the same mobile network provider is much easier than 

login to traditional cloud provider and ask for service. 

Moreover, they are getting the service with much cheaper 

rate than using the traditional cloud. 

If we further analyze the task completion time of our 

CellCloud then we can see that among the total task 

completion time 80% time is required for sending the task 

to the bidders and receive the result back to CCS. Even 

though the data transfer rate in 4G networks is very high, 

it is still much smaller than the data transfer rate inside 

the traditional cloud such as Amazon, Google etc. The 

task completion time in CellCloud and Traditional Cloud 

will be approximately same if we do not consider the task 

transfer time or if we consider the similar data rate in both 

cases. With the advancement of technology, the data 

transfer rate in mobile network is increasing every couple 

of years. Researchers have already started working of the 

improvement of mobile network that will soon converge 

to the 5G technology [36]. According to the specification 

defined in the blueprint of 5G technology, the data 

transfer rate will be much higher around 10Gb/s as 

compared to 3Gb/s 4G technology. Moreover, 5G 

technology will have very small amount of latency and 

response time, and will consume much smaller power 

than the currently using 4G technology. If we deploy our 

CellCloud according to the specification defined in 5G 

technology, the task completion time will be reduced to 

approximately 1/3 of the current task completion time. In 

that case, CellCloud can also serve the task, which 
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requires immediate result with significantly smaller 

amount of cost than traditional cloud. 

 

14. CONCLUSION AND FUTURE WORK 
The current trend of rapidly growing number of smart 

phone users along with the tendency of switching to new 

phones in every couple of years is creating a big pile of 

unused mobile devices. To the best of our knowledge, 

CellCloud is the first protocol that attempts to reshape the 

definition of mobile cloud by incorporating these unused 

but available resources. Along with the detailed 

architecture of such a system, we have developed a cost 

model to analyze the benefits from both mobile owners’ 

and provider’s point of view. CellCloud features, such as, 

facilitating different pricing options for different 

deadlines and level of reliability, providing money to the 

mobile owners for sharing their unused resources, and 

lessening operational cost compared to traditional cloud 

for the cloud provider ensure that such a model can create 

a win-win situation for all the parties. Currently, we are 

trying to build a model by which, the CellCloud provider 

can provide an estimation of task completion time and the 

associated cost before accepting a task from the client. 

For doing this, we are planning to train our system with 

sample tasks of various sizes. Based on the result obtained 

from the training, we will develop a map between task 

size and the required amount of resource. We also plan to 

deploy the architecture in small scale in real life mobile 

infrastructure to analyze the feasibility of the model. 
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